

Wireless Sensor Network Technologies for Applications in Nuclear Power Plants

 $E \models m$

Jing Jiang

NSERC/UNENE Senior Industrial Research Chair Department of Electrical and Computer Engineering The University of Western Ontario, London, Ontario, N6A 5B9, Canada jjiang@eng.uwo.ca http://cies-western-eng.ca/jjiang/home.htm

Dedicate this presentation to late Prof Zhijian Zhang

 $E \neq m_0$

Spectrum of Electromagnetic Waves

Spectrum of wireless sensors

Propagation of Electromagnetic Waves

Electric and Magnetic Fields

Electromagnetic Wave Propagation

Result

 $E \neq mc$

4/=>

 $\mathbf{E} \times \mathbf{B}$

Advances in Wireless Communications

Telegraph & telephone

Radio & television

Video telephony

Satellite

Computer networks & the Internet

An early Morse telegraph machine & the first telephone

The first transatlantic wireless signal by Marconi in 1901, Signal Hill, St. John's, Newfoundland

Space communication

Canada's first commercial Earth observation satellite, RADARSAT-1, launched in November 1995

Video conference

Advances in Control and Instrumentation

Why go Wireless ?

- Iower installation costs
- Iower maintenance costs
- reduced connector failure
- rapid deployment
- less or no wires
- increased mobility and collaboration

 $E \neq m$

- convenience of use
- □ faster access to information
- easier network expansion
- easier network modifications
- access to difficult locations
- options for guest access
- new operation possibilities

Wireless Landscape

Industrial Applications of Wireless Sensor Network

Industrial wireless sensor network (IWSN)

- Interconnected wireless sensors
- Sensors measure physical process variables
- Information transmitted to the control/monitoring station

WSN Modules

WSN modules

- Use low power
- Communicate wirelessly
- Offers
 - Conveniences and cost-savings

Pressure Sensor $E \neq mc$

Mesh Netwo

Gateway

Standards and Protocols

International standards and protocols for IWSN

 $E \neq mc$

Industrial Versions of WSN Systems

Emerson process management (WirelessHART)

Potential Applications of IWSNs in Nuclear

Use of Industrial WSNs

- Process variables measurement
- Equipment condition monitoring
- Predictive maintenance
- Remote diagnostics
- Post-accident monitoring

WSNs in NPPs

- For monitoring applications.
- Can be used in both primary and secondary systems.

WSNs offer

- Cost savings wire in NPP is expensive (e.g., \$2000/ft)
- Convenience wires can be difficult to install

Applications of interests

- Equipment condition monitoring
- Plant environment monitoring
- Radiation level and dose monitoring

Wireless Equipment Monitoring System (Non-Safety Related)

Wireless Equipment Monitoring System (Safety Related)

WSNs for Equipment Monitoring

Equipment condition monitoring in NPPs

E≠mc

WSNs for Equipment Monitoring

Additional sensor measurements can be acquired

- In a cost-effective way
- Provide redundancy and/or diversity
- Protect a monitoring system against physical mishaps

Measurements from wireless sensors

- Validate the wired sensor readings
- Serve as a back-up unit
- Provide an alternative ways if the wired channel fails

WSN can help optimize maintenance

- Reduce plant down time
- Reduce radiation exposure
- Improve plant economy, safety and availability

 $E \neq mc$

Radiation Level Monitoring Wireless technologies Monitoring technologies

 $E \neq mc$

Post-accident and Environment Monitoring

4/=>

WSNs used for Equipment Monitoring

Issues

Performance of WSNs in an NPP environment

- Harsh EMI environment.
- Complex geometrics.
- Packed with equipment and large concrete and steel structures.

Multipath Problems in Wireless Sensor Networks

WSNs System Design Requirements

Characterization of EM environments in NPP

WSNs Deployment Strategies in NPPs

Issues to be investigated

EM interference to safety instruments in the plant

- Interference by the electromagnetic noise from other equipment
- Modulation frequencies used
- **Effective signal transmission within the plant**

Radiation damage to electronics in the WSN devices

 $E \neq mc$

Exclusion Zones near Safety Instruments

EMI/RFI Impacts on Safety I&C Instruments

- EMI/RFI effects depend on the transmit power level
 - Walkie-talkie and cell phone use higher levels of transmit power
 - WSN devices can operate at a much lower power level
- The EMI/RFI impacts from WSN modules will be minimal
 - Several test deployments have lead no issues
 - Experiments have further confirmed such observation

Experimental Results

A log-rate meter was selected as a sensitive instrument

- Receive the output from a log power meter, which is used to monitor the reactor power
- Generate the derivative of the log power output
- This derivative is a natural indicator of how fast the power is increasing
- Several log rate meter trips have been reported due to EMI/RFI

 $E \neq mc$

Systems Used in the Tests

- A fission chamber
- Power supplies
- A log power meter
- A log rate meter
- An oscilloscope

 $E \neq mc$

Wireless Devices Used in the Tests

- Dev. 1. The WSN modules, using ZigBee protocol.
- Dev. 2. The WNS modules, using CSS modulation
- Dev. 3. Walkie-talkie
- Dev. 4. Cell phone

Test Layout

Locations of the devices

- Pos. a. Front of the log-rate meter
- Pos. b. Side of the log power meter
- Pos. c. Back of the meters
- Pos. d. Near the ion chamber and the cables (wound-up beside the instruments)
- Pos. e. Near the ion chamber and the cables (extended to the full length)

 $E \neq mc$

Variation of EMI/RFI with Distance

Test equipment used

- The same log rate meter
- The same walkie-talkie
- ZigBee compliant Memesic IRIS module, with transmit power set to17 dBm (50 mW)

IRIS modules

Walkie-talkie

IRIS

Comparisons of the EMI/RFI impacts of wireless devices on log-rate meter

Wireless Device	Positions					
	Pos. a	Pos. b	Pos. c	Pos. d	Pos. e	
Dev. 1	None	None	None	None	None	
Dev. 2	None	None	None	None	None	
Dev. 3	Strong	Strong	Very Strong	Weak	None	
Dev. 4	Very Weak	Very Weak	Weak	None	None	

Dev. 1WS nodes; Dev. 2, Chirp based WS node; Dev. 3, Walkie-talkie; and Dev. 4 cellphone

 $E \neq m$

Results of Comparison

Comparisons of the EMI/RFI impacts of IRIS module and walkie-talkie on log-rate meter at various distances

Distance in inches	Rate change (%/s)					
	Walkie-talkie	WSN module				
2	14	0				
4	10	0				
6	8	0				
8	2	0				
12	1	0				

 $E \neq m$

Limits

Regulatory aspects

- Several nuclear regulatory bodies have provided guideline to address concerns with EMI/RFI form the WSN devices on the safety system instruments
- US NRC Regulatory Guide 1.180 has
 - identified EMI/RFI as environmental conditions that can affect the performance of safety-related electrical equipment.
 - recommended EM operating envelopes for I&C systems in NPPs.
- Based on this guideline, a wireless system can be used if the EM emission remains within the operating envelope.

 $E \neq mc$

Regulatory aspects

- walkie-talkie radios, which typically use much higher transmission power, and operate at MHz frequency bands
- WSNs devices operate at much lower power level, and in the GHz frequency band
- WSN nodes can be safely placed
- There is a strong evidence that a modern WSN system can perform in a NPP, while satisfying the regulatory guidelines.
- However, all relevant regulatory aspects must be taken in the consideration for designing a WSN for a NPP

 $E \neq mc$

Distributed distributed antenna system: leaky cable

Signal strength test for different frequencies

Figure 3-1 Test points collected in the Crystal River auxiliary building

40

Signal strengths at different frequencies

Figure 3-2 RSRP at 730 MHz in auxiliary building

Reference Signal Received Power (RSRP) under different frequencies

4/32

Wall Penetration capability of wireless signals at different frequencies.

https://blog.tel-tron.com/2010/06/03/why-312-mhz-kicks-butt-for-senior-livingemergency-call-systems/

43

Radiation Damage to Electronics

Electronic components on board WSN nodes must be able to withstand ionizing radiation

- Radiation resistance is one essential requirement for WSN to be used in an NPP
- Radiation resistance of the WSN node needs to be designed with consideration to
 - The type of radiation (alpha, beta, gamma rays, neutron)
 - Normal conditions
 - Accident conditions

Source : Formulated using data in The graphical flip-chart of nuclear & energy-related topics 2012, The Federation of Electric Power Companies of Japan

= mc

Wireless Monitoring System

\$ / ∃ ⇒

A Wireless devices for high level of radiation

46/25

Experimental Approaches

Radiation Resistance

The lifespan defined that each unit has a functional failure under the condition of dose rate.

 $E \neq mc$

- Communication Performance
 - Error packet rate, loss packet rate, etc.
 - Wireless Signal quality
 Frequency shift, RSSI, etc.

Irradiated Samples

Туре	Parameter	Sample-1	Sample-2	Sample-3	Sample-4
Wireless parameter	Frequency	915 MHz	433 MHz	433 MHz	433MHz & 915MHz
Semiconducto r technology	Analog signal processing circuit	Bipolar	CMOS, BiCMOS	BiFET, BiCMOS	Redundant design
	Analog-to- digit converter	Bipolar	CMOS	LCCMOS	
	Microcontroller	CMOS	CMOS	CMOS	
	Wireless transceiver	Bipolar	CMOS	CMOS	

48/25

Experimental Setup

Experimental Results

Before-irradiated

After-irradiated for 20 hours

 $E \neq n$

4/=>

Experimental Results (Radiation Resistance)

Comparison of radiation resistances of wireless devices under a high dose rate condition (20 K Rad/h)

Experimental Results (Radiation Resistance)

Comparison of radiation resistances of wireless devices under a low dose rate condition (200 Rad/h)

Many Resources are available

Computer Communications and Networks

Zaigham Mahmood Editor

The Internet of Things in the Industrial Sector

Security and Device Connectivity, Smart Environments, and Industry 4.0

4/3>

Conclusions

- WSNs in NPPs has attracted significant interests for NPP applications.
- A WSN system can offer several benefits to the monitoring applications in a NPP.
- Several challenges need to addressed.
- Distributed antenna (leaky cable) seem to be an effective way to connect many devices together.
- Many wireless (such as WiFi based) systems have been installed in nuclear facilities.

E = mc

Thank you for your attention! ***

감사합니다

 $E \neq m_0$