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Abstract: This article provides brief information about the fundamental features of a newly-developed 
diagnostic system for early detection and identification of anomalies being generated in water chemistry regime 
of the primary and secondary circuit of the VVER-440 reactor. This system, which is called SACHER (System 
of Analysis of CHEmical Regime), was installed within the major modernization project at the NPP-V2 
Bohunice in the Slovak Republic. The SACHER system has been fully developed on MATLAB environment. It 
is based on computational intelligence techniques and inserts various elements of intelligent data processing 
modules for clustering, diagnosing, future prediction, signal validation, etc, into the overall chemical 
information system. The application of SACHER would essentially assist chemists to identify the current 
situation regarding anomalies being generated in the primary and secondary circuit water chemistry. This 
system is to be used for diagnostics and data handling, however it is not intended to fully replace the presence of 
experienced chemists to decide upon corrective actions. 
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1 Introduction1

In nuclear power plants, water is used in primary 
circuits, secondary circuits as well as auxiliary 
systems. Water becomes an aggressive medium 
especially at high temperature when in contact with 
structural materials. Hence the reliability of many 
nuclear power plant systems is dependent on water 
chemistry during normal operations, startups, 
shutdowns and abnormal operation cases. In 
water-cooled power reactor, some undesirable effects 
may occur even under normal operating conditions, 
such as corrosion, erosion or deposition of corrosion 
products and other insoluble substances on heat 
transfer surfaces. Chemistry control in nuclear 
reactors is important at least from four different 
perspectives, namely integrity of barriers, plant 
radiation levels, deposit buildup and safety 

 

[1] . 
 
Chemistry and radiochemistry data measured with 
conventional or advanced methods and sensors, as 
well as plant data (such as temperatures, mass flow 
rates, and other thermal-hydraulic and operational 
data) are normally collected with data acquisition and 
diagnostic system. For this measurement, on-line 
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monitoring is preferred. Nevertheless, the off-line 
sampled data serve as supplemental data, which may 
positively or negatively influence the credibility of 
diagnostics in substantial manner.  
 
2 Chemical information system 
Originally there were four units operated at Bohunice 
Nuclear Power Plant in the Slovak Republic. However, 
currently only the 3rd and 4th units are operating, 
because the first two units have been closed as the 
requirements for Slovakia’s accession to European 
Union.  The Bohunice Nuclear Power Plant V2 
(NPP-V2), which is the newer type of Soviet designed 
VVER-440 pressurized water reactor, has a water 
chemistry monitoring system called SYMOCHER 
(SYstem for MOnitoring of CHEmical Regimes) 
together with CHEMIS (CHEMical Information 
System) as a part of LIMS (Laboratory Information 
Management System).  It is a distributed complex 
information system for performing, monitoring and 
control of chemical aspects of NPP operation 
processes. The system is based on combination of 
Linux and WinXP ORACLE database-platform.  The 
main features of this system include:  
 collecting and archiving raw or pre-processed 

information on continuous operational 
measurements within the technology, 
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 automatic control of chemical injection into 
secondary circuit, 

 support for sample collection and chemical 
analyses according to good laboratory practices, 

 generating schedules of laboratory analysis, 
monitoring the degree of analyses completion,  

 elementary statistical processing of measured 
data, 

 checking and alerting for the occurrence of events 
such as exceeded limits of monitored parameters, 
including in the context of user-adjustable 
relations of these parameters, 

 preparing gathered or measured data for 
verification and analyses, 

 presenting collected data in graphs or tables and 
further processing the collected data to show the 
plant status by easier way on the interactive 
displays,  

 calculation of pre-defined parameters and 
investigation of mutual parameter 
interdependencies, 

 quality assurance modules (e.g. calibrations and 
quality control charts), and 

 generation of protocols to export data to various 
formats. 

 
The system is a very powerful tool for the 
management of plant chemistry and associated 
activities. Nevertheless, the knowledge of experienced 
plant chemists is still necessary for effective 
utilization of the system. In order to maintain plants’ 
ability to effectively respond to the existing or 
possible new anomalies, introduction of support 
function by higher level information and technology 
(IT) than at present is necessary for the future 
challenges along with plant operation optimization 
and the related staff reduction with the reflection of 
knowledge management aspects in mind. Thus, a 
computational intelligence-based application package 
is a promising way to achieve this future direction. 
 
3 Intelligent extension 
Extensive measures have been implemented within 
the modernization project, such as the improvement of 
power plant’s nuclear safety, seismic resistance, and 
fire safety, as well as the increase of operation 
reliability and availability of the Bohunice V2 units. A 
new safety control system TELEPERM XS was 

commissioned in both the 3rd and 4th units. The 
replacement of section and auxiliary switchboards had 
been completed.  The replacement and extension of 
plant information systems had also been completed.  
 
The following goals had been achieved through the 
completion of the Bohunice V2 upgrade program: 
increased level of nuclear safety in accordance with 
international standards for nuclear power plants of the 
same type; increased operation reliability of units; 
establishment of conditions for up-rating of units to 
107% of the original rated power and prolongation of 
the power plant lifetime.  
 
The availability of prompt information about the 
chemical conditions of the primary and secondary 
circuit is very important to prevent the undue 
corrosion and fouling build-up. For this reason, VUJE 
Inc. has been developing a new diagnostic system for 
early detection and identification of anomalies being 
generated in water chemistry regime. This system is 
called SACHER (System of Analysis of CHEmical 
Regime) and was installed within the major 
modernization project at the NPP-V2 Bohunice, units 
3 and 4, as supplemental extension to the existing 
chemical information system CHEMIS. Both 
SACHER and CHEMIS systems are common for units 
3 and 4 and are located in the water chemistry 
laboratories, which are also common for both units. 
 
The typical chemical information systems that exist in 
operation at the NPPs provide users with values of the 
measured parameters together with their time trends 
and other derived values. Further to that, the roles of 
experienced users are required in order to identify the 
situation of the monitored process, to make the 
subsequent decisions, and to take upon the appropriate 
measures. The SACHER system, based on the 
computational intelligence techniques, inserts various 
elements of intelligent data processing modules for 
clustering, diagnosing, future prediction, signal 
validation, etc, into the overall chemical information 
system. The relation of CHEMIS and SACHER is 
shown in Fig. 1.  
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Fig.1 The structural diagram of water chemistry monitoring 

and diagnostic system at NPP-V2 Bohunice. 
 
Although both systems receive the data from the plant 
computer through the chemistry monitoring system 
SYMOCHER, the SACHER system functions 
independently from CHEMIS. Such a configuration 
allows easier implementation of SACHER in the other 
Slovakian NPP Mochovce in the future. 
 
SACHER has been fully developed on the MATLAB 
environment and has the modular structure described 
in the following sections (see also Fig.2). 

 
  Fig.2 The functional block diagram of SACHER water 

chemistry diagnostic system.  

 
3.1 Initialization module 
The initialization module serves to launch the 
continuous surveillance of the chemical regime of   
both the 3rd and 4th units concurrently. Prior to that, 
the user of the system manually initializes the values 
of a few chemical parameters and the connection 
status of some plant systems which are not available 
on-line. The module also enables the adjustment of 
these parameters on the run whenever such 
requirement arises.  
 
There are approximately 130 process and chemistry 
parameters that are inputted into SACHER with the 
sampling frequency of 1 minute. They are placed in a 
FIFO buffer with 512 values for each parameter. The 
normality, fuzzy identification, and validation 
modules process only the current data values, while 
the time prediction and trend modules make use of the 
delayed data snapshots from the buffer. The size of a 
buffer, which is currently set as 8.5 hours, is going to 
be increased substantially in the next upgrade of the 
system. The low sampling rate of 1 min is taken due to 
the slow changes of chemical processes. Another 
reason for the selection of the low sampling frequency 
was the expected high computing requirements which 
the standard personal computer may not be able to 
meet within shorter sampling interval. This limitation 
naturally becomes insignificant when the hardware 
and software upgrade will be further made in future.  
 
3.2 Normality module 
The objective of normality module is to recognize 
whether or not the situation of the process starts to 
deviate from the normal one. This module is based on 
the possibilistic fuzzy clustering algorithm[2],[3] 
implemented into the neuro-fuzzy process signal 
validation system PEANO[4] developed by the OECD 
Halden Reactor Project. It is a joint undertaking of 
national organizations in 18 countries including the 
Slovak Republic. 
 
The clustering algorithm must be able to generate the 
representative clusters to which the patterns of process 
parameter values belong. As the pattern vectors may 
have the characteristics of several classes, the 
classification must assign any single pattern to the 
representative clusters through the degree of 
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membership. Otherwise, the pattern must be discarded 
if it is not represented by any cluster. Another 
requirement on the clustering algorithm is the smooth 
transition between the clusters as the situation 
represented by process signals evolves due to power 
maneuvers or transients. 
 
Fuzzy clustering reflects the probabilistic requirement 
that the total probability for an input data set pattern 
that belongs to any cluster is 1. It implies the patterns 
that are not reflecting any of the identified cluster 
prototypes are classified and assigned to the clusters, 
merely because of the implicit certainty that all of the 
patterns belong to the established partition. There can 
be uncertainty (or fuzziness) on where the incoming 
pattern could be assigned; otherwise no uncertainty 
exists if the incoming pattern can be assigned 
somewhere. A number of issues may arise, such as: 
- lack of robustness against noisy data.  
- The inability to provide the statement: "I do not 
know", although it might be the best answer for a 
given situation. An incoming pattern might be given a 
high grade of membership in a cluster, even if it is far 
away from all the centroids, only because it is 
relatively closer to one specific cluster. 
 
Relaxation of the requirement imposed on the 
established cluster partition leads to a possibilistic 
approach. For this reason, the possibilistic fuzzy 
clustering approach has been used in this module. A 
possibilistic classifier initially learns a dataset X of 
pattern samples only from normal situations. In other 
words it calculates the cluster prototypes and the 
corresponding membership grades of pattern samples.   
 
The step-by-step procedure used to develop the fuzzy 
and possibilistic classifiers can be summarized as 
follows: 
- Given a set X of only normal situations samples, 
compute an initial set of cluster centroids using the 
crisp ISODATA[5]  algorithm that has been chosen 
because it automatically optimizes the number of 
required clusters. 
- Initialize the elements of the partition matrix U with 
crisp values (0 or 1), using ISODATA. Subsequently, 
run the Gustafson-Kessel[2] algorithm, which produces 
the fuzzy classifier. 

- Use the updated fuzzy partition from the previous 
step to start the iterative process of the Krishnapuram- 
Keller[3] algorithm to arrive at a possibilistic partition.  
 
During this process, the model increases its robustness 
to noisy data and many patterns in X could be 
discarded as not representative of any developing 
cluster. As new patterns are examined during the 
monitoring phase, the possibilistic model evaluates in 
which cluster or clusters the incoming pattern could 
possibly be assigned, if any. It means that patterns that 
do not reflect any of the identified cluster prototypes, 
i.e. do not belong to the clusters of normal situations, 
are discarded as unknown if they do not fit into any 
cluster. The low degree of membership to all normal 
situations clusters, which represents a normality index, 
is the indication of an incoming anomaly and serves as 
early warning to staff in order to take upon the 
appropriate measures. 
 
There are 26 signals of chemical quantities selected by 
an experienced chemist. All acquired snapshots of 
these signals were then filtered and only those 
satisfying the specific criteria set up in advance were 
chosen to build up the possibilistic fuzzy clusters of 
normal situations and for normality index 
calculations. 
 
An example of a normality index window is depicted 
in Fig.3. 
 

Fig.3 An example of a normality index window. 
 
The normality index values for both the 3rd and 4th 
units over the last 512 minutes (8.5 hours) are shown 
in the sliding windows. In the case presented, both 
indices are slightly below the normal band, which is a 
strip of light green background color. The normality 
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index line is color-coded with green, amber, brown, or 
red for all signals available, one, two, or three and 
more signals respectively missing. The situation that 
the less inputs available, the worse evaluation of the 
normality index can be understood by the change of 
line color. 
 
The bigger normality index value means the situation 
is closer to normal. The results of the normality 
module, which is based on data- driven models, are in 
consensus with the identification of a normal situation 
by the fuzzy identification module. It is conversely 
based on the rules set up by an experienced chemist. 
Nevertheless, the normality index usually remains in 
the range of the low values. It is the result of the first 
version of the normality module having been built up 
on data acquired in the periods some time ago when 
the water chemistry regime was controlled under 
slightly different operational conditions than the 
current standard. This means that the established 
clusters are not the best representatives of the current 
operational situations. The new cluster partitioning is 
being prepared and will be issued after the completion 
of thorough evaluation of the collected data against 
possible failures.  
 
3.3 Fuzzy identification module 
The objective of fuzzy identification module is to 
identify the anomaly in the chemical regime. Despite 
the previous normality module in which only the 
deviation from the normal regime is expressed by the 
normality index as the degree of membership to 
clusters of normal situations, in the fuzzy 
identification module, the situation, whether normal or 
anomalous, is recognized on the basis of a set of fuzzy 
rules. The fuzzy if-then rule is made up of a number of 
antecedent and consequent linguistic statements, 
suitably related by fuzzy connections.  They were 
proposed by an experienced chemist and apply his 
knowledge on the chemical process, which is acquired 
over a long period of time.  
 
The fuzzy rule base consists of a set of R rules 
(currently 80), each assigned to an anomaly to be 
identified, e.g.: 
 
Rj: if (p1 is P1j) or (t1 is T1j) and…and (pn is Pnj) or 
(tn is Tnj) then ( a is Aj ) 

 
The measured antecedent variables p are represented 
by the fuzzy sets P, e.g. HIGH, NORMAL, or LOW, 
into which range of each variable is partitioned. The 
estimated trend variables ti are represented by fuzzy 
sets T, e.g. INCREASING, STABLE, or 
DECREASING. Although the fuzzy rules were 
originally proposed with the trend variables for 
diagnosing the anomalous situations, yet the current 
version does not include them. The reasons are 
justified in the later section of this article.  
 
The membership functions to the fuzzy sets are of 
typical trapezoidal shape, which again were proposed 
by an expert. Similarly to the zero-order 
Takagi-Sugeno-Kang fuzzy model, the consequents a 
are represented by singleton spikes A, which refer to 
the anomaly to be identified.  
 
The first step is to fuzzify the crisp numerical input 
values, i.e. to determine by what degree they belong to 
each of the appropriate fuzzy sets via membership 
functions. In the second step, the connective operators 
and and or are interpreted as minimum and maximum, 
respectively. Implication method implemented for 
each rule is the product operator. The firing strength of 
each rule then reflects by what degree the rule is 
activated by the incoming inputs, i.e. the respective 
anomaly degree in which the current operational 
situation is at that moment, as shown in Fig.4. 
 

 Fig.4 An example of a fuzzy identification window. 
 
According to Fig.4, usually more diagnoses, i.e. more 
fuzzy rules, can fire concurrently. The reason is that 
the antecedent conditions of more rules, matching the 
anomalous situations near to each other, are fulfilled to 
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a certain degree. Normally in the diagnostic systems, 
the rules in the fuzzy rule base are connected by else 
connective operator interpreted by maximum, which 
would end up with the final output. In the current 
system, this step has been omitted even if the user can 
see more rules firing at the same time. This approach 
was adopted on purpose as in reality, the current first 
version of the fuzzy rule base does not include the 
trend variables. Thus the rules are not the optimal 
representatives of the anomalies. It has been found 
that the recognition of the trends in the inputs was not 
sufficiently reliable to avoid degraded evaluation of 
the rule. It is therefore better from the perspective of 
human-factor issues to leave the final judgment on 
experienced user. Despite these limitations, the users 
may experience an overall satisfaction from the 
application of the fuzzy identification module. 
Nevertheless it will be the further tuning task for the 
next upgrade of the system to minimize this effect by 
refining the rules and membership functions.  
 
In Fig. 4 the columns are color-coded. Blue represents 
the situation when all chemical quantities required for 
evaluation of the fuzzy rule are available. Green is 
reserved for normal situation. This allows users to 
easily identify the degree of its fulfillment.  If one or 
more quantities entering the antecedent part of the rule 
are missing (this corresponds to the incomplete input 
information), the color of the column changes to red. 
The more inputs missing, the more the firing strength 
of the rule might be negatively affected. This would be 
expressed through the change of line color. 
 
The users may also obtain the time trends of all 
diagnostics in the form of a 3D waterfall diagram and 
also their description by clicking a proper button. 
 
3.4 Time-prediction module 
The objective of time-prediction module is to predict 
the behavior/trend of the selected measured chemical 
quantities 8 hours ahead in 15 minutes step from the 
moment of request. The model uses properly-trained 
artificial neural networks, each giving the prediction 
to the specific time step. Each network has 3 layers, 
input layer of 48 equidistant time-delayed inputs, 1 
hidden layer and one output layer with one node for 
prediction.  It means that for one quantity to be 
predicted 8 hours ahead, there are 32 neural networks 

to be engaged. In reality the neural networks would 
even be more, as the entire operating range of each 
quantity has been partitioned into 3 or 4 fuzzy clusters 
by fuzzy c-mean algorithm. This partitioning aims to 
avoid training of the neural networks to capture all 
situations at once. Each cluster is assigned to its own 
set of neural networks. It has been proven that the 
neural networks perform better if they are trained to 
recognize only a specific types of situations. 
Figure 5 illustrates the time prediction of a selected 
chemical quantity. 
 

 
Fig.5 An example of time prediction window. 

 
During the prediction task, the cluster that reflects the 
most of the given situation is found in the beginning. 
Afterwards the prediction is conducted by neural 
networks that are trained to situations of that 
respective cluster. 
 
The training and testing data were obtained from the 
real process. The mean absolute percentage prediction 
error (MAPE) in most cases is approximately 1% for 
short-time prediction and has a growing trend to 10% 
for long-time prediction 8 hours in advance, which 
satisfies the original project criteria. Yet there are 
situations when the signals change their stationary 
behavior and the prediction accuracy decreases. As 
mentioned above, the neural networks’ inputs are 48 
delayed values representing 8 hours of past time. For 
successful prediction of the time series, one needs a 
much longer sliding time delay window in the input 
than the prediction time horizon applied for the neural 
networks output. The current 8 hour window was 
originally selected as the minimal trade-off to comply 
with the computer speed and memory capabilities. It 
limited the choice by the authors of this paper to the 
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present length of the data buffer as 512. The 2k length 
was chosen for discrete wavelet based denoising of 
inputs to the neural networks. 
 
In this first version, only a limited effort on the 
selection of delays was performed and they were left 
equidistant. The other limitation of the current system 
is that only the past values of the same time series are 
used for the univariate time series prediction. 
Forecasting better prediction performance may be 
attained if variations in the other related variables are 
also taken into account. However by the authors’ trial 
case, it resulted in more complicated neural networks 
without significant improvement to the forecasting 
outcome. The authors of this paper conjecture that 
this might be ascribed to the short input time-delay 
window which the authors adopted in this paper.  
 
In the further step of the authors’ study, the 
time-prediction module will be rearranged after 
switching to 64bit architecture of the new computer 
with the aim of improving the prediction accuracy.   
 
3.5 Validation module 
The objective of validation module is to validate the 
measured quantities. The originally intended 
neuro-fuzzy approach to validation of readings of 
chemical quantities did not produce satisfactory 
results. This is perhaps due to the relations between 
the chemical quantities, which are many times vague 
and with substantial delays. 
 
As a consequence, the auto-associative kernel 
regression method based on fuzzy c-mean 
classification and adaptive distance measure[6],[7] was 
chosen for validation. The true expected value of the 
measured quantity is calculated as the weighted 
average of the values obtained from the nearest 
clusters in a certain vicinity to the most representative 
one. The centers of these clusters have been found in 
the training phase in advance. The mismatch between 
the measured values and their true expected calculated 
counterparts can be estimated whether or not 
exceeding the properly chosen error band.  
 
Figure 6 shows the validation of a selected chemical 
quantity from the 4th unit.  
 

Fig.6 An example of validation window. 
 
3.6 Trend module 
This module serves for showing the trends of the 
acquired quantities as seen in Fig.7. 
 

Fig.7 An example of a trend window . 
 
 
4 Conclusions 
This article provides a short description of the 
chemical information system SYMOCHER/ CHEMIS 
and its intelligent extension SACHER implemented at 
the Slovakian Bohunice NPP.  
 
SACHER aims to support chemists in the early 
detection and identification of anomalies in the 
primary and secondary circuit water chemistry. This 
would help chemists in identifying the latest and 
developing situations at the NPP. 
 
SACHER, which makes use of computational 
intelligence techniques, has been newly-developed 
and is being further tuned on the basis of acquired 
experience. There are further plans for improvements, 
mainly to taking into account the new operational 



FIGEDY STEFAN, and SMIESKO Ivan  
 

80 Nuclear Safety and Simulation, Vol. 3, Number 1, March 2012  

situations in the water chemistry regime. The 
shortcoming of the current version is that the fuzzy 
rules do not consider the trends of ascending, stable, or 
descending. The reason is that unreliable recognition 
would cause inaccurate evaluation of the strength of 
anomalies. The next step to make the fuzzy 
identification module more accurate is to develop a 
reliable algorithm of chemical quantity trend 
recognition. 
 
This expert-like intelligent extension to the existing 
chemical information system, particularly for its 
ability of early notification of abnormal situations in 
the chemical regime will assist young chemists as well 
as experienced chemists with overloaded 
responsibilities. In the future it is also expected that it 
will assist control room staff even when the absence 
of chemists in the shift crew. Although this system is 
effective, it is not intended to fully replace the 
presence of experienced chemists to decide upon 
corrective actions. It is expected that SACHER will be 
used for diagnostics and as an additional tool for data 
handling. 
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Nomenclature 
CHEMIS CHEMical Information System 

LIMS Laboratory Information Management 
System 

NPP Nuclear Power Plant 
MAPE Mean Absolute Percentage Error 
SACHER System of Analysis of CHEmical 

Regime 
SYMOCHER SYstem for MOnitoring of CHEmical 

 Regimes 
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