

 Nuclear Safety and Simulation, Vol. 3, Number 2, June 2012 97

High level issues in reliability quantification of safety-critical
software

KIM Man Cheol

Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon, Korea (charleskim@kaeri.re.kr)

Abstract: For the purpose of developing a consensus method for the reliability assessment of safety-critical
digital instrumentation and control systems in nuclear power plants, several high level issues in reliability
assessment of the safety-critical software based on Bayesian belief network modeling and statistical testing
are discussed. Related to the Bayesian belief network modeling, the relation between the assessment approach
and the sources of evidence, the relation between qualitative evidence and quantitative evidence, how to
consider qualitative evidence, and the cause-consequence relation are discussed. Related to the statistical
testing, the need of the consideration of context-specific software failure probabilities and the inability to
perform a huge number of tests in the real world are discussed. The discussions in this paper are expected to
provide a common basis for future discussions on the reliability assessment of safety-critical software.
Keyword: probabilistic safety assessment/probabilistic risk assessment; digital instrumentation and control;
software reliability; Bayesian belief network; statistical testing

1 Introduction1
The quantification of software reliability has been

one of the areas that have received a lot of attention

in the field of probabilistic safety assessment

(PSA)/probabilistic risk assessment (PRA) of digital

instrumentation and control (I&C) systems. In an

effort to develop a technically sound method for

software reliability quantification, a research on

Bayesian belief network (BBN) modeling and

statistical testing for quantifying software reliability

is ongoing. The objective of the research is to

obtain insights into the feasibility, practicality and

usefulness of developing digital system models for

inclusion in PSAs/PRAs of nuclear power plants

(NPPs), specifically with respect to incorporating

software failures into the models.

With the consideration that we do not have consensus

methods for quantifying the reliability of

safety-critical software in NPPs, a workshop

involving experts with knowledge of software

reliability and/or NPP PSA/PRA was held in May

2009. At the workshop, experts established a

philosophical basis for modeling software failures in

a reliability model[1]. Based on the philosophical

basis, a review of quantitative software reliability

methods (QSRMs) is performed[2], which is expected

Received date: May 31, 2012
(Revised date: June 4, 2012)

to contribute to the development of consensus

methods for modeling and quantifying the failures of

safety-critical software in NPPs.

From the review of QSRMs, the BBN modeling is

identified as a promising method for accounting for

the quality of software lifecycle activities, while the

statistical testing is identified as a promising method

for accounting for the quality of the final product, i.e.

software. Because it is generally accepted that the

consideration of both the quality of software lifecycle

activities and the quality of final product is necessary

to give more confidence on the estimation of the

reliability of software, both the BBN modeling and

the statistical testing are considered in this paper.

2 BBN modeling
2.1 Assessment approaches

Bayesian networks[3] are directed acyclic graphs in

which the nodes represent propositions or variables,

the arrows (or arcs) signify the existence of direct

causal dependencies between the linked propositions,

and the strengths of these dependencies are quantified

by conditional probabilities. Recently, Bayesian

networks have been applied to the reliability

estimation of safety-critical software. Many BBN

models for software reliability quantification such as

Helminen[4], Gran[5], and Fenton et al.[6] have been

developed, and each of the BBN models has different

focus and emphasis, and therefore has its own

KIM Man Cheol

98 Nuclear Safety and Simulation, Vol. 3, Number 2, June 2012

advantages and disadvantages. To take advantage

from different focus and emphasis of each BBN

model, it seems to be helpful to consider the BBN

modeling from the assessment approaches.

Neil et al.[7] mentioned three ways of carrying out

systems assessment and their purposes, which are:

 In-process assessment

 Pre-deployment assessment

 In-field (retrospective) assessment

The selection of the assessment approach is closely

related to the purpose of the assessment. In-process

assessment is performed to identify and prevent

problems earlier, pre-deployment assessment is

performed to evaluate products and processes after

the system has been produced, but before deployment,

and in-field assessment is performed to assess a

system that is already being operated.

If the purpose of the assessment is interpreted in

terms of the regulatory process, it can be summarized

as shown in Table 1. Considering that the

risk-informed analysis process for digital systems,

which is the safety analysis process for digital

systems with the information on PSA model and

results, has not yet been satisfactorily developed, it is

preferable to develop a software reliability

assessment method with the consideration of the

risk-informed analysis process in mind.

Table 1 Application area of software reliability assessment
in regulatory process

Assessment approach Application in regulatory process

In-process Regulatory review

Pre-deployment Issuance of amendments

In-field Risk-informed regulation

2.2 Consideration on evidence

When evidences are found during or after the

software lifecycle activities, the evidences can be

reflected to change the probability distribution of the

BBN model based on Bayes’s theorem. This process

is called Bayesian update. One desirable feature that

should be considered in the BBN model is the

easiness in evidence collection. In this sense, it is also

desirable to model observable quantities in the BBN

model, so that evidences on the observable quantities

can be reflected to the BBN model by Bayesian

update.

Helminen[4] identified main sources of reliability

evidence in the case of safety critical system as

follows:

 Design features

 Development process

 Testing

 Operational experience

If we compare the three assessment approaches given

by Neil et al.[7] and the four main sources of

reliability evidence given by Helminen[4], the

available sources of reliability evidence depending on

the assessment approach can be summarized as

shown in Table 2.

Table 2 Sources of evidence depending on assessment
approach

Assessment approach Sources of evidence

In-process Development process
Design features

Pre-deployment Development process
Design features
Testing

Retrospective (in-field) Development process
Design features
Testing
Operational Experience

The four main sources of reliability evidence in the

case of safety critical system can be divided into the

following two categories:

 Qualitative evidence

 Quantitative evidence

The design features and the development process of

the system are considered to be the sources of

qualitative evidence, while the testing and the

operational experience are expected to provide

directly measurable statistical evidence and thus are

considered to be the sources of quantitative

evidence[4]. A similar distinction can also be found in

Gran[5], where the BBN model can be divided into

the quality part which reflects the qualitative

evidence and the testing part which reflects one of the

quantitative evidence, the testing result. Neil et al.[7]

also mentioned five sources of evidence, which are

development process evidence, product evidence,

resource evidence, evidence about the operating

environment, and analogy. The five sources of

High level issues in reliability quantification of safety-critical software

 Nuclear Safety and Simulation, Vol. 3, Number 2, June 2012 99

99

evidence are considered to be more related to the

qualitative evidence.

The use of quantitative evidence from testing and

operational experience is considered to be relatively

easy, while the use of qualitative evidence from

design features and development process is

considered to be relatively difficult, because it

requires extensive use of expert judgment. One of the

observable quantitative evidence from the

development process which also have significant

impact on the software reliability is the number of

defects, which can be estimated by the number of

anomaly reports.

The qualitative evidence from the design features and

the development process follows certain quality

assurance and quality control principles, which are

based on applicable standards[4]. Even though it is

true that there is very little empirical evidence to

confirm the link between the process quality and the

product quality, as mentioned by Fenton et al.[8, 9], it

is generally believed that the more strict standards the

design features and development process fulfill the

more reliable the system is believed to be.

2.3 Cause-consequence relation

After reviewing various BBN models for software

reliability quantification, it is concluded that the

development of a BBN model based on a specific

guideline for evaluating safety-critical software

products is most promising. An example of such

specific guideline is the branch technical position

(BTP) 7-14 (guidance on software reviews for digital

computer-based instrumentation and control systems)

in NUREG-0800 (standard review plan).

The acceptance criteria for design outputs in BTP

7-14 are divided into two sets: functional

characteristics and process characteristics. The

functional characteristics are composed of seven

individual characteristics, which are accuracy,

functionality, reliability, robustness, safety, security,

and timing. The process characteristics are also

composed of seven individual characteristics, which

are completeness, consistency, correctness, style,

traceability, unambiguity, and verifiability.

Another identified issue related to the BBN modeling

is the cause-consequence relation of a set of

characteristics and an individual characteristic. In one

viewpoint, a set of characteristics is viewed as the

result of its individual characteristics, and therefore

each of the individual characteristics is viewed as the

cause and the set of characteristics is viewed as the

consequence. This viewpoint is illustrated in Fig. 1,

with the example of functional characteristics. In Fig.

1, the seven characteristics nodes such as accuracy,

functionality, timing and so on are considered as

independent nodes and affect the functional

characteristics node. In this case, the seven

characteristics nodes are considered as the causes and

the functional characteristics node is considered as

the consequence. The advantage of this viewpoint is

its intuitiveness, because the concept behind the

structure of the BBN model is easier to be understood

and accepted by most practitioners in the field. But, it

should be noted that several limitations associated

with this viewpoint such as independence among the

seven individual characteristics nodes also exist. In

other words, several disadvantages were also found

in actual application of this viewpoint to software

reliability quantification.

Fig. 1 Viewpoint of each characteristic as cause.

In another viewpoint, each characteristic can be

viewed as the result of an overall function or process,

and therefore a set of characteristics is viewed as the

cause and each of its individual characteristics is

viewed as the consequence. This viewpoint is

illustrated in Fig. 2, with the example of functional

characteristics. In Fig. 2, the functional

characteristics node is considered as an independent

node and affects the seven characteristics nodes such

as accuracy, functionality, timing and so on. In this

case, the functional characteristics node is considered

Functionality

Accuracy

Timing

Functional

Ch

KIM Man Cheol

100 Nuclear Safety and Simulation, Vol. 3, Number 2, June 2012

as the cause and the seven characteristics nodes are

considered as the consequences. The advantages of

this viewpoint such as the existence of

interdependence among the seven individual

characteristics nodes were found in actual application

of this viewpoint to software reliability quantification.

But, it should be admitted that this viewpoint is less

intuitive and more difficult to be understood and

accepted by the practitioners in the field.

As mentioned above, each viewpoint has its

advantages and disadvantages, and therefore proper

selection of the viewpoint is necessary in the

development of the BBN model for safety-critical

software reliability quantification.

Fig. 2 Viewpoint of each characteristic as consequence.

3 Statistical testing
The idea of statistical testing to demonstrate the

reliability of software seems to begin by Currit et

al.[10] and Musa et al.[11]. As explained by

Chillarege[12], the central idea of statistical testing is

to use software testing as a means to assess the

reliability of software, contrary to the popular use of

software testing as a debugging method. Therefore,

instead of preparing the test cases based on

specifications, requirements, and testers’ expectation

on what an implementation is most likely to do

wrong[13], test cases should be prepared based on the

operational profile of the software.

The recognition of the importance of the operational

profile leads to the discussion on how to determine

the operation profile, which will be the basis for

preparing test cases for the statistical testing. If the

operation profile is determined as an average of the

integration of all possible contexts that the software

will be subjected to, the statistical testing will provide

an average reliability of the software over all possible

contexts. If an operational profile is determined to

each of all possible contexts, the statistical testing

will provide a context-specific reliability of the

software. Because software failures are, in general,

context-specific, the average reliability of the

software over all possible contexts or initiating events

does not have a lot of meaning when the software is

subject to a specific context.

In NPPs, a specific initiating event is likely to cause

one or more plant parameters to exceed certain

conditions, and thus cause safety-critical digital I&C

systems such as reactor protection systems (RPSs) or

engineered safety features actuation systems

(ESFASs) to generate actuation signals. Because

different initiating events are expected to cause

different sets of plant parameters to exceed certain

conditions, the software in the safety-critical digital

I&C systems is required to provide correct output in

different conditions depending on different initiating

events. In other words, a specific initiating event

forms a specific context to the software in the

safety-critical digital I&C systems.

Considering that PSA/PRA develops event trees and

fault trees to each of the initiating events, strictly

speaking, software failures following an initiating

event should be considered in a context-specific

manner, and therefore a context-specific software

failure probability should be provided to the

context-specific software failure.

But, in reality, it is already widely known that the

demonstration of a reasonable average software

failure probability requires a statistical testing with a

significant number of test cases without failures. For

example, Chu et al.[2] mentioned that more than 105

tests with no failures must be conducted to

demonstrate a mean software failure probability of

10-5, which is a normally expected software failure

probability for safety-critical digital I&C systems

such as an RPS or ESFAS.

Figure 3 conceptually shows this type of testing for

averaged software reliability. It should be noted that

this type of software testing for averaged software

reliability corresponds to the black-box-based

statistical software testing for the software reliability

demonstration. In this software testing, the software

Functionality

Accuracy

Timing

Functional

Ch

High level issues in reliability quantification of safety-critical software

 Nuclear Safety and Simulation, Vol. 3, Number 2, June 2012 101

101

is considered as a black box and therefore it is simply

assumed that there exists only one single path from

the input to the output, instead of considering the

detailed arrangement of the internal software

modules and the structure of the paths among the

modules. Test cases are prepared based on the

operational profile of the software. The basic logic

behind this type of software testing is that the single

path in the software is considered to represent the

average of various paths in the software and the test

cases are considered to represent the average context.

In this sense, successful execution of 105 test cases

representing the averaged context on the single path

representing the averaged software paths is believed

to demonstrate a certain level of software reliability,

say 10-5.

Fig. 3 Testing for averaged software reliability.

Figure 4 conceptually shows the software testing for

context-specific software reliability. It should be

noted that this type of software testing for

context-specific software reliability corresponds to

the white-box-based statistical software testing for

the software reliability demonstration. In this

software testing, the detailed arrangement of the

internal software modules and the structure of the

paths among the modules are all considered. In the

example shown in Fig. 4, it is assumed that ten

different paths exist depending on the ten different

contexts that the software will be subjected to.

One of the difficulties in this type of the

white-box-based statistical software testing is that the

software reliability in each path has to be

demonstrated. In the example shown in Fig. 4, if it is

assumed that the occurrence probabilities of all ten

contexts are same as 0.1 and it is required to

demonstrate the software failure probability is less

than a certain value, say 10-5, the calculation shows

that the software failure probability of a path

corresponding to a specific context should be

demonstrated to the same value, 10-5. If successful

execution of 105 test cases is required to demonstrate

such software failure probability, the total number of

successful execution of test cases for demonstrating

the software failure probability of 10-5 becomes 106,

because there exist ten contexts and the successful

execution of 105 test cases is required to each context.

In summary, considering that each of the software

failure probability specific to an initiating event has

to be demonstrated, there is a concern whether a

statistical testing with such a large number of test

cases is possible in reality or not.

5 6

Fig. 4 Testing for context-specific software reliability.

In fact, even if it is assumed that an averaged

software failure probability for all possible initiating

events can be used to a specific initiating event in

PSA/PRA, the demonstration of such a low averaged

software failure probability is already not easy.

Between the need of the consideration of

context-specific software failure probabilities and the

inability to perform a huge number of tests in the real

world, it is necessary to find an appropriate way of

compromising the two sides.

The above example also raise another issue related to

the statistical testing on whether the knowledge on

the internal structure of the software is helpful in

reducing the number of necessary test cases for

demonstrating a predefined software reliability level

or not. In one viewpoint, ironically, the knowledge on

the internal structure of the software seems to

increase the number of necessary test cases. More

discussions are necessary to find a clear answer to

this issue.

105tests/context × 10 contexts = 106 tests

Software

Software

105 tests for averaged context

KIM Man Cheol

102 Nuclear Safety and Simulation, Vol. 3, Number 2, June 2012

4 Conclusions
For the purpose of developing a consensus method

for the reliability assessment of safety-critical digital

I&C systems NPPs, several high level issues in

reliability assessment of the safety-critical software

are discussed. Considering that both the quality of the

development process and the quality of the software

product are important for safety-critical software,

BBN modeling is considered as a method for

accounting for the quality of the development process

and the statistical testing is considered as a method

for accounting for the quality of the software product.

The high level issues discussed related to the BBN

modeling are:

 Relation between the assessment

approach and the sources of

evidence

 Relation between qualitative

evidence and quantitative evidence

 How to consider qualitative

evidence.

 Cause-consequence relation

The high level issues discussed related to the

statistical testing are:

 Need of the consideration of

context-specific software failure

probabilities

 Inability to perform a huge

number of tests in the real world

 Usefulness of the knowledge on

the internal structure of the

software in reducing the number

of required software tests

It seems that a long way is ahead to reach a

consensus method for software reliability

quantification. In this sense, the contributions from a

lot of experts with various backgrounds are necessary

to develop a consensus method for the reliability

quantification of safety-critical software. The high

level issues and related discussions introduced in this

paper are expected to provide a common basis for

future discussions among the experts in the field of

the reliability assessment of safety-critical software.

Nomenclature
BBN Bayesian Belief Network

ESFAS Engineered Safety Features Actuation

Systems

I&C Instrumentation and Control

NPP Nuclear Power Plant

PSA Probability Safety Assessment

PRA Probability Risk Assessment

QSRM Quantitative Software Reliability Method

RPS Reactor Protection Systems

Acknowledgement
This work was partly supported by Nuclear Research

& Development Program of the National Research

Foundation of Korea (NRF) grant funded by the

Korean government (MEST) (grant code:

2012-011506).

References
[1] CHU, T.L., MARTINEZ-GURIDI, G., YUE, M.,

SAMANTA, P., VINOD, G., and LEHNER, J.:
Workshop on philosophical basis for incorporating
software failures in a probabilistic risk assessment,
BNL-90571-2009-IR, Upton, NY: Brookhaven National
Laboratory, 2009.

[2] CHU, T.L., YUE, M., MARTINEZ-GURIDI, G., and
LEHNER, J.: Review of quantitative software reliability
methods, BNL-94047-2010, Upton, NY: Brookhaven
National Laboratory, 2010.

[3] PEARL, J.: Probabilistic reasoning in intelligent systems:
networks of plausible inference, San Mateo, CA:
Morgan Kaufmann Publishers, 1988.

[4] HELMINEN, A.: Reliability estimation of safety-critical
software-based systems using Bayesian networks,
STUK-YTO-TR 178, Helsinki: STUK, 2001.

[5] GRAN, B. A.: SCIENCE AND SUBSTANCE:
ASSESSMENT OF PROGRAMMABLE SYSTEMS
USING BAYESIAN BELIEF NETS, SAFETY
SCIENCE, 2002, 40: 797-812.

[6] FENTON, N., NEIL, M., MARSH, W., HEARTY, P.,
MARQUEZ, D., KRAUSE, P., and MISHRA, R.:
PREDICTING SOFTWARE DEFECTS IN VARYING
DEVELOPMENT LIFECYCLES USING BAYESIAN
NETS, INFORMATION AND SOFTWARE
TECHNOLOGY, 2007, 49:32-43.

[7] NEIL, M., LITTLEWOOD, B., and FENTON, N.:
Applying Bayesian belief networks to system
dependability assessment In: Proceedings of safety
critical systems club symposium, 1996, 71-94.

[8] FENTON, N. E., PFLEEGER, S. L., and GLASS, R. L.:
SCIENCE AND SUBSTANCE: A CHALLENGE TO
SOFTWARE ENGINEERS, IEEE SOFTWARE, 1994,
11(4): 86-95.

[9] FENTON, N. E., and NEIL, M.: A CRITIQUE OF
SOFTWARE DEFECT PREDICTION MODELS, IEEE
TRANS SOFTWARE ENG., 1999, 25(5): 675-689.

[10] CURRIT, P. A., DYER, M., and MILLS, H. D.:
CERTIFYING THE RELIABILITY OF SOFTWARE,

High level issues in reliability quantification of safety-critical software

 Nuclear Safety and Simulation, Vol. 3, Number 2, June 2012 103

103

IEEE TRANS SOFTWARE ENG., 1986, SE-12 (1):
3-11.

[11] MUSA, J. D., IANNINO, A., and OKUMOTO, K.:
Software reliability: measurement prediction application,
New York: McGraw-Hill, 1987.

[12] CHILLAREGE, R.: Software testing best practices, IBM
Research Technical Report RC 21457, IBM Research,
1999.

[13] BANKS, D., DASHIELL, W., GALLAGHER, L.,
HAGWOOD, C., KACKER, R., and ROSENTHAL, L.:
Software Testing by Statistical Methods - Preliminary
Success Estimates for Approaches based on Binomial
Models, Coverage Designs, Mutation Testing, and
Usage Models, Gaithersburg, MD: National Institute of
Standards and Technology, 1998.

