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Abstract: Considerable advancement has been made in computer and information technology that can benefit 
safety and economy in Operation and Maintenance (O&M). However, before implementing new technology in 
nuclear power plants there is a need for qualification of methods and related tools. The OECD Halden Reactor 
Project (HRP) has taken an active role in facilitating implementation of technology advances and in particular 
application of condition monitoring techniques for maintenance support.  
TEMPO [1] is a system based on physical models for thermal performance monitoring and optimization 
developed at the HRP. The system aims at satisfying information needs associated with condition monitoring, 
on-line calibration monitoring of plant measurements, process fault detection and diagnosis.  
The data-reconciliation [2] method used in TEMPO relies on fitting a simulation of the turbine cycle to the 
actual plant data. The difference between measurements and calculated values (residuals) are monitored to 
detect deviations. Each measurement point is assigned an uncertainty. How well the simulation fits to the 
measurements is compared to the given uncertainty. Traditionally this comparison is directly used to determine 
if there is a fault in the measurement.  
By using a time series analysis of plant data, changes below single point statistical significance can be found. 
Variations in both individual residuals and the global object function, i.e. the sum of all residuals, are small and 
their values mostly static. Thus, trending the global object function value is important in order to identify 
possible faults. Comparing residuals with past behaviour enhances fault detection compared with a statistical 
analysis of each data point.  
An example of fault detection is given from the analysis by TEMPO of data from the Loviisa 2 NPP in Finland. 
Keyword: condition monitoring, maintenance support. 

 

1 Introduction1

The focus of this paper is the analysis using the 
data-reconciliation toolbox TEMPO on data obtained 
from the Loviisa 2 NPP in Finland. Instead of looking 
at case studies for only a few data sets, data from a 
whole year has been used for this analysis. This has 
lead to a better method for fault detection. 
 
The data-reconciliation method used in TEMPO relies 
on fitting a simulation of the turbine cycle to the actual 
plant data. Each measurement point is assigned an 
uncertainty. How well the simulation fits to the 
measurements is compared to the given uncertainty. 
Traditionally this comparison is directly used to 
determine if there is a fault in the measurement. This 
requires that the uncertainty is a true representation of 
the random variance of the measured value. 
The random variance is difficult to obtain as it includes 
representivity and modelling inaccuracies. From 
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analysis of real plant data it was found that the 
measurements showed little random behaviour from 
one time to another. This leads to the conclusion that a 
time series analysis of measurement residuals would 
result in an earlier detection of faults. This method is 
described in greater detail in this paper. 
 
The analysis of these time series is essential in both 
validating a model and for the implementation of fault 
detection routines. The method for fault detection relies 
on the comparison of the current fit to many previous 
fits. So reducing the variation of the fit increases the 
chance of detecting new faults. These considerations 
for model improvements are discussed in this paper. 
There is also given an example of a fault detection 
procedure from the installation of TEMPO at the 
Loviisa 2 NPP in Finland. 
 

2 Physical modelling method 

This section details how a physical model of a thermal 
cycle can be used for condition monitoring. To use 

 Nuclear Safety and Simulation, Vol. 1, Number 2, June 2010  121 



BEERE William, BERG Øivind, WINGSTEDT Emil, SAVOLAINEN Samuli, and LAHTI Tero 
 

physical models a statistical method is required to fit 
the model to the measurement data, but an 
understanding of how to build the model is also 
required. Both these aspects are discussed in this 
section. 
 
2.1 Flow sheets and data reconciliation 

The central assumption in data reconciliation is usually 
that data are distributed according to the normal 
(Gaussian) distribution. Maximising the likelihood of a 
set of estimates for the true values given a set of 
data x
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+ yields the following minimisation problem [3]: 
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where σi
+ is the standard deviation of xi

+. The plant 
heat and mass balance and any other relationships that 
might be included in the model appear in the problem 
as (non-linear) constraints ( )xf ˆ , by which analytical 
redundancy is introduced. Note that in general the 
number of dimensions of is much larger than the 
number of measurements. 

x̂

 
What emerges from the solution to equation (1) is the 
plant state most likely to have produced the current set 
of measurements given their accuracy as expressed in 
σi

+.  
 
The value of the sum in equation (1) is termed the 
object function where as its statistical likelyhood is 
termed the goodness-of-fit. This expresses the 
probability that the deviations from a perfect fit 
occurred by chance, and is therefore a quantitative 
measure of the validity of the model. 
 
2.2 Residuals 
The objective of data-reconciliation is to fit a physical 
simulation to measurement data. The difference 
between fitted values, x~ , and measurement values, 

, is called the residual, : +x v
+−= xxv ~     (2) 

Given the statistical uncertainty in the measurement 
values, , the resulting statistical variation in the 
residual can be determined, 

+
xσ

vσ  (also written as: sigv). 
The residual is expected to have statistical distribution 
with a mean value of zero, ),0( vN σ  [2], and is related 
to the measurement uncertainty by, 

 222 )~()()( xxv σσσ −= +    (3) 

Where xσ~  is the corrected (or reconciled) uncertainty. 
This enables the definition of a value called the 
adjustability. This is the amount a measurement 
uncertainty can be adjusted due to the analytical 
redundancy present in the model. The adjustability is 
defined as, 

 +−=
x

xa
σ
σ~

0.1             (4) 

Where a=1.0 for completely redundant measurements 
and a=0.0 for non-redundant measurements. The 
degree of redundancy is an indication of how much 
information there is about the process properties 
originating from the other measurements. 
 
2.3 Statistical distribution of residuals 

From data provided by Fortum from Loviisa NPP unit 2, 
Fig. 1 shows the distribution of measurement residuals 
for a given time point. These measurement residuals 
have been plotted against the measurement 
adjustability. This we term a residual plot. Plotting 
against the adjustability helps to spread the data out for 
visual inspection. It is also useful as measurement 
residuals with very low adjustability are of lower 
significance for fault detection, [4].  
 
Each dot represents one measurement. The cumulative 
probability distributions are shown for the actual data, 
standard distribution, N(0,1), and a scaled distribution, 
N(0,0.5).  
 
As can be seen the actual data does not fit the normal 
standard distribution. A closer fit is obtained for a 
scaled normal distribution, .  )5.0,0(N
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Fig. 1 Residual plot for the 2005-03-29 data point. 

 
The explanation is that the expected normal 
distribution holds only for an ensemble of instruments, 
plants and models. For the case considered here there is 
only one plant, one model and several instruments. In 
this case the actual data set is a better fit than average, 
thus the reduced variance of the residual distribution.  
 
It is this understanding that leads to the conclusion that 
for any individual measurement the majority of the 
random error in the residual is static as the 
measurement is always for the same instrument 
channel, plant and compared to the same model. Thus 
for a residual trend the variation is much lower than the 
expected statistical distribution. So it is postulated that 
errors can be detected by comparing the current 
measurement residual to its historical values. 
 
2.4 Redundancy 

Redundancy means that there is something which is not 
absolutely necessary. In this case it is applied to 
measurements. Measurements give information about 
the process state at a particular point of the process. A 
redundant measurement can be removed from the 
system and the process state can still be determined. 
The different reasons for this redundancy are described 
below in this section. 
 
2.4.1 Physical redundancy 

A measurement is described as physically redundant 
when there is one or more other measurement at the 
same point in the process measuring the same physical 
quantity. As an example this could be two temperature 
sensors or two flow meters. The requirement that they 
are at the same point needs some degree of flexibility 

as there will often be some physical separation between 
measurements. 
 
2.4.2 Analytical redundancy 

Analytical redundancy states that two or more 
measurements are related by a physical dependency. A 
simple example is a temperature and pressure sensor at 
the same location. They measure very different 
quantities, but if there is wet damp at that process 
location then they are linked by the dependency of 
saturation pressure with temperature. In this case there 
is an analytical redundancy. 
 
The same can be true of two pressure sensors separated 
by a flow resistance (which can be just the length of a 
pipe). They will not read the same pressure, but their 
pressure difference will be a function of the flow 
properties between them. In this case there is the 
possibility to link the two pressures with a physical 
equation. 
 
In general when considering larger systems the 
relationships between different measurements may be 
multi-variant and time consuming to analyse 
analytically. As will be argued in this paper, the 
analytical redundancy comes from a systematic 
statistical analysis of the whole system as modelled in a 
flow sheet. 
 
2.4.3 Apparent redundancy 

The final type of redundancy discussed here is that 
which is introduced through the choice of physical 
model. These measurements are not truly redundant but 
appear to be due to approximations made in the 
modelling. This is a separate type of redundancy as the 
measurements do not belong to the physical or 
analytical type. 
 
This arises from approximations made in making the 
model. An example can be measurements surrounding 
two parallel heat exchangers. If the heat exchangers are 
instead modelled as one, which is often done, then 
some of the physically separate measurements will 
appear at the same position in the model. Then they 
will appear to have physical redundancy.  
 
2.5 Modelling equations 
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One needs to be mindful of which assumptions are 
made when choosing how to model a system. Different 
types of equations have different considerations for 
use. 
 
2.5.1 Fundamental equations 

The simplest of models are just based on an assumption 
that there is conservation of mass and energy. 
Equations used in these simple models we term 
fundamental equations. They are always valid and 
require no tuning of parameters. 
 
2.5.2 Analytical equations 

Then there are analytical equations which are derived 
from fundamental equations but which rely on certain 
assumed physical characteristics. An example is heat 
transfer to a smoothly flowing liquid where the flow is 
assumed to be laminar. 
 
These types of equations are only valid for a range of 
conditions. In the example above the condition for 
laminar flow needs to be met. Like the fundamental 
equations no parameters require tuning. 
 
2.5.3 Empirical equations 

Finally there are the empirical equations. Which are 
derived from experiments an example is the heat 
transfer in turbulent fluids. The use of these physical 
equations always carries a certain amount of 
uncertainty and requires tuning of parameters to the 
actual system being modelled. They are also only 
validated for a limited range of physical states. It is this 
type of physical equation which is most common when 
modelling the heat cycles of NPPs. 
 

3 Time Series Analysis 

As mentioned above the ability to detect system faults 
is greatly enhanced when the fit of a current time point 
is compared to the fits of historical values. This we 
term time series analysis. 
 
In this section we present an example of this analysis 
from data obtained by using the data-reconciliation 
toolbox TEMPO with data provided by Loviisa 2 NPP, 
Finland.  

 
 

Fig. 2 Time series of global object function, showing limit for 
99% statistical confidence limit. 

 
Trending the global object function value, which gives 
an indication of the ability of the model to fit the data, 
is important to identify possible faults. Individual 
residual trends are important to identify and judge the 
significance of the fault. 
 
Trending the global object function is thus expected to 
give an overall indication of the state, i.e. if faults are 
present or not, in the plant. With the heat balance model 
used in the preliminary study it is expected to mostly 
detect model or data faults. Fig. 2 shows the calculated 
global object function value trend for the data set. The 
variations for fault free data points are low compared to 
statistical expectation, indicated by the 99% 
confidence limit also drawn. The faults indicated here 
are outliers in the data sets, suspicious points (i.e. data 
sets where the object function value has increased), and 
changes during the revision period. Here we will 
discuss the analysis of the suspicions points. 
 
Suspicious points are data points where the global 
object function deviates from previous behaviour. The 
data point marked as suspicious in Fig. 2 has a 
substantially higher object function value than the 
remaining data set. The increased object function was 
sustained throughout a five days period. 
 
To identify the cause of the problem, a residual plot for 
a faulty data point is compared with a residual plot for 
the previous fault free data point. The two 
measurements with a significantly increased residual 
are indicated in Fig 3. 
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Fig. 3 Residual plot for suspicious data showing 
measurements whose residuals are significantly  

different from the previous fault free data. 
 
This fault was then traced to a modelling 
approximation made in the TEMPO model where 
parallel condenser units are modelled as a single unit. 
This is normally a reasonable approximation except for 
this case described above where there was an 
asymmetry in the sea water flow to the two condensers.  
The TEMPO model could be extended to model all 
condensers individually, should this be desired. 
However, in normal operation, the condensers are run 
symmetrically. The extended model would then be 
unnecessary complex and require more calculation 
time. 
 

4 Analysis of variances 

From the analysis of data from a whole cycle the 
normal ranges of parameters and deviations can be 
determined. However it should be noted that the data 
set cannot be assumed fault free. So any deviations 
could be due to faults, either measurement, equipment 
or modelling. 
The significance of the variations can be determined by 
comparing it to the calculated statistical uncertainty. 
Variations well below the statistical uncertainty are of 
no significance; whereas variations larger than the 
statistical uncertainty are.  
 
It is here that the expectations of the different 
parameter types are discussed. Parameters which 
should in general vary can be considered as 

environmental parameters. Examples are cooling water 
temperature and turbine outlet pressures. Other 
parameters will be expected to be fixed, such as turbine 
constants and heat exchanger cleanliness.  
 
These supposed constants are being used in the 
empirical physical equations. Here their fitted value 
will only be constant if the correct physical correlation 
has been used.  
 
This analysis allows for the possibility of fixing 
parameters, thus moving from a mass and heat balance 
model to a physical correlation model. Constant 
parameters can be fixed if their variation is small 
compared to their statistical uncertainty. Fixing 
parameters whose variation is large compared to the 
statistical uncertainty will result in a larger variation of 
the fit value. This will in turn mask possible faults and 
is thus undesirable. 
 
The variation in fit (object function) and the values of 
the empirical equation parameters forms the basis for 
comparing model improvements. It is not necessary an 
improvement to reduce the fit value if its variation, or 
that of an empirical fitting parameter, increases. As 
fault detection lies in comparing current measurement 
deviations to historical ones, then reducing the 
variation in fit value is the most important goal. 
 

5 Fault detection in practice 

The data-reconciliation toolbox TEMPO [1,2] is used to 
analyse one year of data from the Loviisa NPP unit 2.  
Previously there has been presented analysis of plant 
data and shown how faults can be detected from 
inspection of the time series of the key statistical 
parameters [4]. This method has been used on-line at 
Loviisa-2 since 2005. The following is a description of 
an actual fault detected at the plant.  
 
The on-line installation of TEMPO at Loviisa-2 was 
configured to perform a calculation daily. The global 
performance indicator was then checked and if its value 
was greater then 0.95 no further action was taken. This 
value was set from previous experience of fault free 
operation. 
 
However, on 20 December its value was found to be 
0.68. This prompted further investigation leading to the 
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discovery that the scaled residual values ( )vv σ/  
showed a significant increase for three measurements. 
The trend plot of the Q value and one of the residuals is 
shown in Fig 4.  
 

Performance index and scaled residual for RM20F001
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Fig. 4 Fault detection, from goodness of fit key parameter  

and identification from measurement residual  
for the main condensate flow. 

 
The measurements concerned are two flows on one of 
the condensate lines and a steam extraction pressure for 
the first condensate pre-heater. This led to the 
conclusion that there was abnormal behaviour in the 
condensate flow. When the condensate flow was 
plotted then clear spikes of the flow value could be 
seen.  
 
The cause of these spikes was later traced to a leaking 
valve. The leak was only ~0,3 kg/s but it resulted in 
first filling up the pipe after the valve, and then 
suddenly draining into the condenser. After flowing 
into the condenser, this extra water then resulted in an 
increase in the condensate flow which was spotted as a 
deviation in the model fit. The reason for this uneven 
drain flow is unclear. The fault caused a very small 
lowering of the plant thermal efficiency, and increased 
pumping requirements. TEMPO is now at Loviisa-2 
running hourly to increase the chance of catching such 
faults. 
 
Physical models provide the plant operator with a lot of 
new information. The problem then becomes what is 
the key information to follow and what is the follow up 
information to examine if a fault is indicated in the key 
values. In this example the global object function is the 
key value with the change in the measurement residuals 
as the follow up information. The choice of key and 
follow up information is an important factor in the 

practical implementation of the data-reconciliation 
technique. 
 

5 Conclusions 

This paper has given a brief introduction to the method 
and application of physical modelling with data 
reconciliation as applied to thermal heat cycles as 
NPPs. 
 
This methodology discusses the role of empirical 
equations in the application of physical modelling 
methods and stresses the importance of time series 
analysis as opposed to single point statistical analysis. 
 
With a time series analysis of one year of plant data 
using the TEMPO toolbox, changes below normal 
statistical significance were identified. Variations in 
residuals were small, and their value mostly static. 
Thus, comparing residuals with past behaviour detects 
faults earlier than a statistical analysis of each data 
point. 
 
A systematic method has been developed to enable 
fault detection and identification based on trending the 
global objection function as well as measurement 
residuals.  First the global object function value is 
trended to detect possible faults. Individual residual 
trends are then used to identify and judge the 
significance of the fault.  
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