A Monte Carlo simulation method for system reliability

analysis

MATSUOKA Takeshi® 2

1. College of Nuclear Science and Technology, Harbin Engineering University No.145-1, Nantong Street, Nangang District, Harbin,

Heilongjiang Province, 150001 China

2. Center for Fundamental Education, Utsunomiya University, 350 Mine-machi, Utsunomiya City, 321-8505 Japan

(mats@cc.utsunomiya-u.ac.jp)

Abstract: Bases of Monte Carlo simulation are briefly described. Details of the application of Excel software
to Monte Carlo simulation are shown with an analysis example. Three-component system is taken up and
analysis is performed with the consideration of repair actions. Finally, it is shown that loop structure can be
solved by Monte Carlo simulation method, which is realized by Excel software. The simulation results are
compared with the analytical calculation results and good agreement is confirmed.
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1 Introduction

In this lecture note, explanations are given for a
Monte Carlo simulation method for system reliability
analysis.

Many system reliability analysis methods are
proposed and wused for probabilistic safety
assessments (PSAs), mainly to assess the safety of
nuclear power plants ™. Although event tree and
fault tree analyses are widely used in nuclear field,
the system structures of nuclear plants are mostly
very complex. System operational modes such as
"phased mission" are sometimes complicated, and
there are various dependencies between operation of
subsystems or component failures. Components have
many kinds of failure modes and failure distributions,
and failed components are repaired and maintained in
the actual operational conditions.

Taking into account these conditions, system
reliability analysis through analytical models will
become very difficult and restrictive. Simulation
methods can straightforwardly treat these many
complicated conditions in one analysis framework.

We first explain the bases of Monte Carlo simulation.
Detailed explanations are given for the application of
Excel software to Monte Carlo simulation. Three
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components system is taken up and analysis is
performed with the consideration of repair actions.
Finally, the Monte Carlo simulation method is
applied to a system in which there is mutually
supportive relation (loop structure). Reliability of a
system with loop structure was not generally obtained
in terms of the arithmetic operators of Boolean algebra,
but it is shown that loop structure can be
straightforwardly solved by this simulation method.

If the readers find out an advantage of this simulation
method, kindly utilize Monte Carlo simulation to
your analysis.

2 Monte Carlo simulation

The idea of Monte Carlo methods!?! is the generation
of random events in a computer model, and this
generation is repeated many times and count the
occurrence number of a specific condition. Monte
Carlo methods are often used in simulations of
physical and mathematical systems.

During the wartime period, the first electronic
computer ENIAC was developed at the University of
Pennsylvania. It was used for the calculation of
thermonuclear problem in Manhattan Project. After
the war, Stan Ulam, who was well versed with
statistical sampling techniques, had an idea to use
ENIAC's miraculous ability for this technique. He
discussed with John wvon Neumann. In 1947,
Neumann showed a detailed outline of a possible

44 Nuclear Safety and Simulation, Vol. 4, Number 1, March 2013



statistical approach to solving the problem of neutron
diffusion in fissionable material. Additionally,
Neumann conceived the algorithm for generating
uniformly distributed pseudo-random numbers. This
was the start of the Monte Carlo method®. The
method was named after the Monte Carlo Casino, a
famous casino where many people, including Ulam's
uncle, would often gamble away their money.

The simulation is treated as a series of real
experiments, and statistical inference will be used to
estimate the confidence intervals for the performance.
As an example, consider component failure
phenomenon. Start with a sound state of a component
and observe it for certain time duration 7. The
component will be in sound or failed state at time ¢
with the aid of random events in a computer model.
Repeat this observation many times and collect the
events the component is in sound state. Fraction of
the number of sound states over total observation
number gives the success probability of a component
at time ¢, and this probability is the reliability R(z) of
this component. Numerical value of success
probability is easily obtained, and the success
probability reflects an assigned failure model, which
is used in the generation of random events.

The Monte Carlo simulation allows us to consider
various aspects of system characteristics which
cannot be easily captured by analytical methods such
as K-out-of-N success criteria, redundancies, phased
mission, stand-by condition, aging effects, repair and
maintenance for components. We can avoid the
restrictive modeling assumptions that had to be
introduced to fit the models to available solutions.
The Monte Carlo simulation is used to complement
these theoretical derivations.

The basic procedure of Monte Carlo method is: (1)
Define a domain of possible events, (2) Generate
events randomly, (3) Perform deterministic judgments
of system states based on the events, (4) Count the
occurrence number of a specific system state among
total observations.

A weakness of the Monte Carlo method is the
computing time expended particularly when we deal
with a large complex system.

A Monte Carlo simulation method for system reliability analysis

3 Monte Carlo simulation by Excel

Let us first consider the failure process of one
component with constant failure rates (standby: As,
operating: Ao) and demand probability Qp. The
reliability R(z) in standby state is governed by the
following equation:

dR—(t) =—AsR(1). 1
dt

With the initial condition R(=0)=1.0, reliability
becomes:

R(t) = exp{-A,t}. 2)

Suppose that a demand for the start of operation is
given at time ¢;, then the reliability is:

R(tl) =0, -exp{—ﬂstl}. (3)

After the start of operation, the reliability is
expressed by the following equation:

R(t) = QD 'exp{_ﬂ’Sl‘l}' eXp{_ﬂo (t _tl)}' (4)

Let us denote the reliability of a component at a
certain time ¢, as R(t,). After a small time duration At
from 1,, the reliability becomes:

R(tz +Ar) = R(tz) eXp{_/ls,o -At}. ©)

The above relations are schematically illustrated as
shown in Fig. 1.

|.standby .:

1.0

operating

Failure occurs
Keep sound state

b —>time

Fig. 1 Reliability of a component with time.

Failure of a component is a stochastic phenomenon.
For a specific observation, failure happens at a
certain time, for example z. Before time ¢; the
component is completely in sound condition and after
time ¢ the component loses its function, that is, the
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component is in failed state with the probability of
1.0. If we make numerous amount of observations
for the same component under the same condition (as
idealistic experiments), the distribution of # is
obtained, and also the number of the cases in which
component is in sound state at specific time ¢z The
proportion of this number against total observation
number becomes the reliability R(z).

The ratio R(t, +Ar)/R(t,) equals exp{-A;,-A} as
seen from Eq.(5). This is the probability that the
component is still in sound state after Ar time passed.
Transition from sound state to failed state during time
interval A¢ can be found by using random number
between 0 to 1. If random number is greater
than exp{-4;,-A¢} , itis judged that the component
failed during this time interval A¢ in a specific
observation.

If failure rates are not constant values but a function
of time, then Eq. (5) becomes:

R(t, + Af) = R(t,) exp{— jf*“z (t¥iiy.  ©

If analytical integration is difficult, the following
approximation is useful:

fzwﬂ(t)dt = A(t,) At 7

The above transition process can be simulated by the
Excel software as shown in Fig. 2. In this case,
As=0.01/min., A0=0.03/min, Qp=0.9 are assumed.

A B & B] E ®
: Standby Random | Success :Cumulatve .
Time - 2 Counting

1 or Operarion . number ; or Failure state

2 0 5(0) 0166570251 1 1

3 2 S(0-2) 0388347194 1 1

4 4 Si2—a) 0628607714 1 1

5 6 S(4-6) 0792436156 1 1

6 5 2(6-5) 0020459856 1 1

7 10 5i8-10) 0536262478 1 1 1
g 10 Qp 0417410082 1 1 1
9 12 0(10-12) 0526036816 1 1

10 14 oi12-14) . In2enEETET 1 1

11 16 O(14-16) | 099626777 0 0

12 18 O(16-18) 0555622379 1 0

13 20 0(18-20) 1 0756045007 1 0 0
14 22 OlE0-22) 00445811903 1 0

15 24 O(22—24) | 09RG462011 0 0

16 26 Ofz4-—26) 10739939803 1 0

17 28 Ol26-28) ;0808475007 1 0

18 30 0O(26-30) | 035802208 1 0 0

Fig.2 Simulation by Excel table for one component.

Time span of 30 minutes are divided into 15 sections
by each 2-minute time duration, and they are written
in column A. Component in standby state is denoted
as S(0-2), and one at operating state as O(10-12) in
column B. Demand for the start of operation (Qp) is
given at 10 minutes. Uniformly distributed random
number is generated in interval [0,1] by Excel
function RAND( ). Random numbers are given at
each time section, in column C.

In column D, transition from sound state to failed
state is judged. In line 3, a random number of
0.388347194 is given. This value is smaller than the
value of 0.9801987, which is calculated by exp(-As
Af) = exp(-0.01 X 2min). In this case, we judge the
component maintains a sound state during 0 to 2
minutes. This judgment is expressed by "1" in the cell
D3 in Excel table.

In cell C8, a random value of 0.417410082 is given,
which is smaller than the value of 0.9 (= demand
probability Qp). It means that the component
successfully starts the operation. This is denoted by
"1" in the cell D8.

In cell C11, a random value of 0.99626777 is given,
and it is larger than the value of 0.941765, which is
calculated by exp(-1o 4f) = exp(-0.03 X 2min). It
means that the component unfortunately fails during
14 to 16 minutes. This judgment is expressed by "0"
in the cell D11.

In column E, state of the component is expressed at
each time. Sound state is denoted by "1", and failed
state by "0". In this model, repair is not considered.
Therefore, once failure occurs, component is
thereafter maintained at failed state. This means that
judgments in D12 to D18 are not used in this case.

Figure 2 shows the results of one experiment, that is,
one case that happened by chance. Now, collect the
numbers of success cases for the time 10 minute, just
after the demand, 20 minute and 30 minute, by
counting the number of "1" in the cells F7, F8, F13
and F18 in a series of numerous experiments (trials).
Figure 3 shows the results.
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Fig.3 Simulation results for one component.

For the reliability of one component with constant
failure rates, analytical calculation can be easily
performed and results are as follows:

R(t =10) = exp{—0.01x10} = 0.905. (8)
R(10; after Demand) = Q,,x0.905=0.814. (9)
R(20) = R(10)-exp{-0.03x10} =0.603.  (10)
R(30) = R(10) -exp{—0.03x 20} = 0.447.  (11)

The simulation results shown in Fig. 3 give good
agreement at 5000 trials with the above analytical
calculation.

4  Three-component
repair action

Now, take an example of a three-component system
and monitor the operating state of the system with the
consideration of repair action. Let us denote the
probability of operating state of a component at time ¢
as Po(t). If failed component is continuously repaired
with constant repair rate g, the probability Po(?) is
governed by the following equation:

d%(f)z_ﬂpo(m 1{1-P, (1) (12)

With the initial
becomes as follows:

system  with

condition Po(t=0)=P(0), Po(t)

Py =2 =G IPO) o2+ ). (19)
H+A H+A

Operating probability of one component can be
obtained by an Excel simulation as shown in Fig. 4.

A Monte Carlo simulation method for system reliability analysis

In this case, the following assumptions are made:
As=0.01/min., 1o=0.03/min., Op4=0.9, and
1=0.03/min.

"Random number(1)" in column C is used for the
judgment of failure and "Random number(2)" in
column E is used for repair. If random number(2) is
greater than exp{-u-Af}, it is judged that the
component is repaired during this time interval Az in
a specific observation. The success of repair action is
expressed by "1" in the column F.

The state of component (column G) is judged as
follows. If the component is in sound state in
previous time interval and failure occurs (0" in
column D), component state is changed to failed state
("0" in column G). If the component is in failed state
in previous time interval and repaired ("1" in column
F), component state is changed to sound state (1" in
column G). In other conditions, component state is
unchanged.

A E 5] D = = G H

Operation; Random ; Success : Random State of

Time Reparr Component

mode ; number(1); or Failure | number(2) Operation

Si0] iD2575En 0843243

0606122

0861135

0
2.0.500-2) 10986118
4..0.502-4) 10864059
g )

S04-6) 0678147 0817631

g S06-6) ;06558974 0745842

O PO D P D

101508100 10816004 0224544

10 o, 015712 0154052

8 |12 |000-12) 0516451 09687256

10 |14 0012141 0951243 0435951

11 | 16.]0014-16) 0254775 [aYzlayizior]

12 .18.]006-18) 0275766 0364012

1320 |00 B-e0li 001 8eg2 0615093

14 | 22 |o(Zo-zo1i0651189 0985634

15 |24 |0i22-24)i 0355673 0033883

16 |26 |0i24-26) 0861875 0084138

17 |28 | D028-28)i 0020291 0581893

18 | 30 |D0EE-30)i0271774 0636244

19 32 0030323 039174 0810188

20 | 34 |0032-3410802077 050718

21 | 36 |0034-36) 0315774 0660723

Lo o R o e ss JrL e st B @ Lo Do eh B o B s e e

22 | 36 |0(36-38) 06113854 0856348

[ NP S G N R S S S NP P S S oo A PSS P R I S
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N N Y I I e Y = =l = =l =) = =R = =]

23 |40 |0(36-40):0 748063 Q67272

L=

Fig.4 Simulation for one component with repair action.

In Fig. 4, failure occurs during time interval 0 to 2
minutes ("0" in cell D3), then component state is
changed to failed state ("0" in cell G3). During 2 to 4
minutes repair action has been succeeded ("1" in cell
F4), then component state is changed to sound state
("1" in cell G4). Component is successfully started
("1" in cell D8), and the operation started (1" in cell
H8). During the standby state, component is not
operated (0" in cells H2 to H7). Failure again occurs
("0™ in cell D10), consequently rendering component
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to be in failed state ("0" in cell G10) and operation
stops (0™ in cell H10).

Success judgment appears in cell D11. However in
this case, component is already in failed state and this
judgment is not used. Fortunately repair is made ("1"
in cell F14) and component is in sound state, and is
placed in operating condition. Figure 5 shows the
simulation results.

Operation
Probability ==T=0d =+=T=20 =0=T=30 =-e=T=40
100
090
080 \“4}__" P Y P O < i 24
070 2
T ——" o "

080 Q\({VW_O_O—C)—_Q—()’O_O_O"O—O—O-’W
050 [-2=w

040

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Trial number

Fig.5 Simulation results for one component
with repair action.

Analytical values can be obtained by Eq. (13), as
follows:

P,(¢t =10, after Demand) = Q,,, exp{—1; x10}
=0.9-exp{-0.01x10} = 0.825. (14)

%(20) _ H _ H— (]“O +1u)P() (10)
M+ H+ A
0.03-0.06x0.825

=052 0.6} =0.678. (15
0.06 p{-0.6} (15)

-exp{-(uu+4,)x10}

P,(30) =0.598. (16)
P,(40) = 0.554. (17)

The simulation results at 5000 trials again give good
agreement with the analytical values. Compared to
the results shown in Fig.3, the repair effects are
apparent.

Now, consider the three-component system as shown
in Fig. 6.

QDA""@

QDB...
Qo> (C)

Fig.6 Three-component system.

OR/AND
SYSTEM

OPERATION

Failure data (4s, 1o, Op, 1) for components A, B and
C are assumed as (0.01/min., 0.03/min., 0.9,
0.03/min.), (0.01/min., 0.05/min., 0.9, 0.01/min.) and
(0.006/min., 0.01/min., 0.99, 0.03/min.), respectively.
Commencement of operation for component A, B and
C are given at 10, 20 and 30 minutes, respectively.

For the simulation analysis, first prepare the Excel
table for each component as shown in Fig. 4. Then,
express system operational logic in Excel table. For
example, "OR" logic between three components is
written as "IF(123+174+1100>=1,1,0)" in a cell (J23).
Here, cells 123, 174 and 1100 have values "1" when
components A, B and C are in operating state at time
40 minutes, respectively. Finally count appeared
number of "1" in cell J23. The ratio of this number to
the total observation number becomes the probability
of the system operation by "OR" logic at the 40
minutes.

Any kind of system operational logic can be written
by logical formula. Therefore, system operation or
configuration can be easily modeled in this
simulation method. Figure 7 shows the simulation
result for "OR" logic.

Operation

Probability = T=10 =t [=20) =0=T=30 =@=T=40
1.00

005 :_-__

083

. )//I&MW

0 1000 2000 3000 4000 50¢
Trial number

Fig.7 Simulation results for three component system.
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5 Analysis of loop structure by Monte
Carlo simulation

For a system, which has logical loop structure(s), the
Boolean relation has to be described with unknown
variable(s). If we try to solve the Boolean equation(s)
with unknown variable(s), we encounter infinite
circulation of the unknown variable(s). Logical loop
was not generally solved in terms of the arithmetic
operators of Boolean algebra[4'7]. The authors have
shown that loop structure could be solved by
analytical procedure and also by a simulation
method™. In this lecture note, detailed explanations
regarding the procedure to solve a loop structure by
Monte Carlo simulation method are given.

As a fundamental configuration of a loop structure, we
think of a system as shown in Fig. 8. Components S1
and S2 are self sustained type (SS-type) components,
and components A, B and C are G-type components,
which require support for their operation. This is an
additional condition in the analysis of loop structure,
not required in previous cases.

Time sequence of the starts of operation is set as ts; (=
4 min.), t(=8 min.), tg(=12 min.), ta(=16 min.) and
tc(=20 min.).

Fig.8 Loop structure for simulation analysis.

The operating probability of component C has been
obtained by the following analytical equation '!:

X(0)= S1(zc) S2(za) - A()B(H)C(r)+ S2(H)B(£)C(¢) (18)

In Eq. (18) both z4(z=16 min.) and z(¢=20 min.) are
not variables but express fixed time points. After the
establishment of loop operation, components S1 and
S2 are stopped at times of 24 min. and 28 min.
Without the supports of SS-type components, the
loop structure continues its operation and the
probability is:

A Monte Carlo simulation method for system reliability analysis

X(0)= S1(zc) S2(za) - A(?) B(£)C(%). (19)

Components' states of S1 and A are obtained by Excel
tables as shown in Figs.9 and 10, respectively. Failure
data (4s, 1o, Op ) are assumed for components S1, S2,
A, B and C as (0.001/min., 0.03/min., 0.9),
(0.001/min., 0.03/min., 0.9), (0.003/min., 0.01/min.,
0.95) , (0.003/min., 0.01/min., 0.95) and
(0.003/min., 0.01/min., 0.95), respectively. For the
simplicity, repair action is not considered.

Operation| Random | Success | State of | Operating
mode number |or Failure| Component state
0 S(0) | 0.000603
2 S(0-2) |0.650115
4 S(2-4) [0.479275
4
6

—_
o

Qd-S1 | 0.516484
0(4-6) | 0.18981
8 | O(6-8) |0.771356
10 | O(8-10) | 0.301401
12 |O(10-12)] 0.845381
14 |O(12-14)|0.658205
16 |O(14-16)] 0.392672
18 |O(16-18)|0.770618
20 [0(18-20)|0.703634
22 |0(20-22)| 0.166524
24 [0(22-24)| 0.71371
24 | Qd-S1X -

[ PO (R R PR R RS (PR PG (NP R P R (RN
||t et |t [t ot ot ot | ot |t [t [t |

(=X [=R=R(=R=2=1 === A S U Y [y piry fry By g oy P l = N (=]

Fig.9 Excel table for SS-type component S1.

Operation | Random | Success | State of | Operable

Time mode number | orFailure [Component|  state
0 S(0) 0.203622 1

2 S(0-2) 10.038305

4 S(2-4) ]0.553231

6 S(4-6) |0.892056

8 S(6-8) |0.641034

10 S(8-10) [0.751363
12 S(10-12)] 0.378489
14 S(12-14)] 0.401957
16 S(14-16)| 0.96376
16 Qd-A |0.826852
18 0(16-18)| 0.35546
20 0(18-20)| 0.428757
22 0(20-22)[ 0.202294
24 0(22-24)]0.543767
26 0(24-26)[ 0.740703
28 0(26-28)[ 0.503788
30 0(28-30)| 0.690876
32 0(30-32)| 0.988171
34 0(32-34)[0.209107
36 0(34-36)[ 0.579538
38 0(36-38)[ 0.007939
40 0(38-40)[0.979722

ololololo|=|= === ==~ |lolololclolo|o|o|e

e mlom =R m === === ==
oclolololo=m|l=|l=m|lm|= === |- = - - - -

Fig.10 Excel table for G-type component A.
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Figure 9 is a table for component S1. During the
standby period, operating state is "0" (not operating).
After the successful start of operation, it becomes
operating state "1", because it is a SS-type
component. S1 is stopped at time of 24 min., then
operating states are "0" after the time of 24 min.

Figure 10 shows a table for G-type component A.
This type of component requires the support for its
operation. Therefore, last column is "operable state"
and "1" in this column means that a component is in
sound state and has a possibility to be operated with
the proper support. In this case, failure occurs during
a time interval from 30 to 32 min. and component A
has no ability to be operated after 32 min.

System with a loop structure (shown in Fig. 8) is
simulated by an Excel table as shown in Fig. 11.
Component states are judged for each time or time
interval. At the right side of the component name,
operating state is shown as "1" (operating) or "0" (not
operating).

At a time of 12 min., components S1 and S2 are
already in operating state, and components A and C
are in standby condition. Demand for start of
operation is given to component B, and operation is
judged by the following logical formula:

IF(N80*(G124+1125)>=1,1,0) (20)

Successful start ("1") or not ("0") is taken from the
cell N80 in the component B's table like Fig. 10. Cell
G124 is next to component name A and gives A's
operating state. Cell 1125 is next to component name
S2 and has a value of "1" (S2 is operating), in this
case. Indeed, component B can be supported only by
component S2 at the time 12 min.

Next box is prepared for time interval of 12 to 16
min., and operating states are evaluated for time of 16
min. Component B's state is judged by the following
formula:

IF(N82*G126*(G129+1130)>=1,1,0) (21)

c D E = G H 1
T=12(B starts)
S1 1 A 0
S2 1
© 0 B 1
T=12-16
S1 1 A 0
S2 1
C 0 B 1
T=16(A starts)
S1 1 A 1
S2 1
C 0 B 1
T=16-18
S1 1 A 1
S2 1
C 0 B 1
T=18-20
S1 1 A 1
S2 1
C 0 B 1
T=20(C starts)
s1 1 A 1
S2 1
© 1 B 1
T=20-22
S1 1 A 1
S2 1
C 1 B 1
T=22-24
S1 1 A 1
S2 1
C 1 B 1
T=24(S1 stops)
S1 0 A 1
S2 1
C 1 B 1
T=24-26
S1 0 A 1
S2 1
C 1 B 1

Fig.11 Excel table for a loop structured system.

Cell N82 gives operability of component B at time of
16 min. Cell G126 gives the operating state of B at
the end of previous time interval (=12 min. in this
case). The reason of this condition is as follows. If
component stops operation due to failure or lack of
support, it will not go back to operating state without
additional demand of start. Therefore, continuous
operation in the past is essential for the operation at a
specific time. Soundness of a component and
existence of support are not sufficient for the
judgment of operating state of a component at
specific time.
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At time of 16 min., component A is started.
Component A's operation after the start is judged by
the following logical formula:

IF(N57*(D134+E131)>=1,1,0) (22)

Cell N57 is in the component A's table, and gives the
information of successful start ("1") or not ("0").
Possible supports are from S1 (cell D134) and from C
(cell E131). The system has loop structure and
components C and A are connected. Thus, the support
by C also has to be considered. In the present
operational sequence, support by C becomes effective
after the time of 20 min. (after the start of C).

In the time interval of 16 to 18 min., component A's
operation is judged by the following logical formula:

IF(N58*G134*(D139+E136)>=1,1,0)  (23)

Cell G134 gives the operating state of A at the
previous time (=16 min. in this case). This is the
same situation of G126 in Eq. (21).

In a similar way, operating states of the components
are identified step by step with time. At time of 24
min., S1 is stopped, and operating state becomes "0"

in the cell D164 (right side of component name "S1").

But the states of other components are operating ("1")
with the support of S2 or mutual supports between
components A, B and C.

The operating probability of component C is obtained
by counting the number of "1" in the cells next to the
component name "C" through the numerous number
of observations. The results are shown in Fig. 12.

Observation is made for the time =18 min.
(Component C starts), =24 min. (Component S1
stops), =28 min. (Component S2 stops) and =40
min.

Operating probabilities at time of 24 min. and just
after the stop of S1 have exactly the same values.

This means that S1 has no contribution to the
probability at time of 24 min. This is also seen in Eq.
(18).

A Monte Carlo simulation method for system reliability analysis

X(): =0=C-starts =omT=24
Probability

06
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Fig.12 Results of simulation analysis
for a loop structured system.

The values of X(#) can be calculated from Eq. (18)
or Eq.(19) as follows:

X (20, C-starts) =0.5004. (24)
X (24) =0.4349. (25)
X (28, S2-stops) =0.2018. (26)
X (40) =0.1498. (27)

For the calculation of X(20), X(24), the dependency
between the first and second terms in Eq. (18) has
been considered. The simulation results at 5000 trials
give good agreement with the analytical values.

6 Conclusion

In this lecture note, explanations have been given for
a Monte Carlo simulation method for system
reliability analysis. Monte Carlo method can
straightforwardly treat any kind of system structure
and operating conditions. We therefore can avoid the
restrictive modeling assumptions that had to be
introduced in analytical methods.

The basic idea of Monte Carlo simulation has been
described. Detailed explanations have been given for
the application of Excel software to Monte Carlo
simulation. Modeling method to treat repair actions
has been explained in detail and three-component
system has been analyzed. Finally, it has been shown
that loop structure can be solved by this simulation
method. The simulation results have been compared
with the analytical calculation results and good
agreement has been confirmed in all cases.
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It is the author’s hope that readers find out an
advantage of the simulation method presented here,
and utilize Monte Carlo simulation for futures
research activities.
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