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Abstract: Bayes’ theorem has been paid in much attention for its application to Probabilistic Safety 

Assessment (PSA). In this lecture, the basis for understanding Bayes’ theorem is first explained and how to 

interpret the Bayes’ equation with respect to the pair of conjugate distributions between prior distribution and 

likelihood. Then for the application to PSA, component failure data are evaluated by Bayes’ theorem by using 

the examples of demand probability of the start of diesel generator and failure of pressure sensor. Frequencies 

of nuclear power plant accidents are also evaluated by Bayes’ theorem for the example case of frequency of 

"fires in reactor compartment" and "core melt" frequency with the experience of Fukushima dai-ichi accidents. 

Lastly, several contrasting arguments are introduced briefly between favorable and critical peoples regarding 

the Bayes’ methods.  
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1 Introduction
1
 

Methods of Probabilistic Safety Assessment (PSA)  

have been widely used for the evaluation of nuclear 

power plant safety
[1]

.  It has been realized, however, 

that the methods of PSA have to deal with the rarity 

of events with lack of meaningful statistical data, 

where traditional statistical methods have not be well 

applicable to PSA. Therefore, Bayes’ theorem has 

been made much attention for its application to PSA.  

 

In this paper, we first discuss the interpretation of 

probability to highlight the contrasting views of 

“subjectivistic” and “frequentistic” probabilities. 

Then Bayes’ theorem is explained in detail on how to 

interpret the Bayes’ equation. Explanation is also 

given for the concept of the pair of conjugate 

distributions between prior distribution and 

likelihood. It is also shown that sequential evaluation 

by Bayes’ method gives the same result with the 

lump evaluation. 

 

Secondly, component failure data will be evaluated 

by the Bayes’ theorem by using example of demand 

probability for the start of diesel generator and failure 

probability of pressure sensor. Also the frequency of 

nuclear power plant accidents is evaluated for the 

case of frequency of "fires in reactor compartment" 

and "core meltdown" frequency with the experience 

of Fukushima Dai-ichi accidents. 
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However, there are many discussions between 

favorable and critical peoples to the Bayes’ methods. 

Therefore, their contrasting opinions are briefly 

introduced in the last part of this lecture. 

 

2 Probability, frequency and event  

There are two major different interpretations of 

probability: probabilities of subjective and 

frequentistic viewpoints 
[2]

. 

 

In subjective view, the probability corresponds to a 

“personal belief” (a degree of belief), for which 

rationality and consistency are required. 

 

In frequentistic view, the probability can be obtained 

from the results of infinite experiment. In each trial, 

the “occurrence” or “no occurrence” of event is 

recorded. It is assumed that relative occurrence 

frequency converges to a certain limit value, and it 

becomes occurrence probability of the event. If we 

randomly chose a set of data from original total data, 

this limit value does not change. Idealized or true 

value of probability is deduced from experimental 

results. Any given experiment can be considered as 

one of possible repetitions of the same experiment, 

each capable of producing statistically independent 

results. Frequentist can use this probability as true if 

there are many events. In other word, probability 

cannot be assigned to a single event. New evidence 

(data) is only treated as sample information. 

 

Therefore, frequentist method will become equivalent 

to subjective method when the evidence is very 

strong and it is treated as if a single event. 
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It is necessary to clarify the difference between 

probability and frequency. Frequency should be 

reduced from results of experiments to become 

measurable.  

 

Usually, we use information other than observed facts 

for the establishment of belief. In subjective view, 

probability is a quantitative expression of state of 

knowledge. It cannot be obtained by experimental 

measurement.  

 

An analyst has the probability which is reflected by 

his/her state of knowledge, and it satisfies the law of 

probability. The probabilities have a kind of values, 

and they are comparable with one of following three 

relations: 

  A=B, A＜B, A＞B. 

Also transitive law can be applied as follows, 

  A＞B, B＞C  → A＞C. 

 

Event is described by a meaningful statement which 

can be determined “true” or “false”. Therefore, “core 

melt down occurs probably in the next 5 years” is not 

an event. Also “the probability of core melt down is 

3x10
-5

/year” is not an event, because probabilistic 

description cannot be determined as “true” or “false”. 

“System A is safe”, “System B is not safe” are not the 

description of events.  “Safe” is a kind of degree, 

and cannot be determined as “true” or "false".  

  

Probability is only given to events. Based on this 

argument, the “probability of probability” is 

meaningless.  It is possible to say “the probability 

that its frequency is inside a certain range”. 

 

"State of knowledge” is analyst's belief or experience 

at a specific time. Analyst can determine “one event 

is true or false” based on his state of knowledge. 

 

In risk analysis, some events are very rare, so we 

have to use experts’ opinions. As a result of risk 

analysis, some probability is obtained, which reflects 

the state of knowledge of the analyst and it is 

consistent with all the beliefs of analyst.  

 

In that sense, it is subjective(Personal), but the 

consistent analysis can be also said as objective. We 

have low level of knowledge as “degree of belief”.  

A“degree of belief” can be expressed by “degree of 

probability”, as probability corresponds to belief.  

Probability can be measurable quantity, so, belief can 

be also measurable quantity. "Belief” is imperfect 

knowledge or mind state of imperfect knowledge. 

Therefore, knowledge can be measurable quantity. By 

this way "knowledge" can be quantified to reflect to 

some probabilistic distribution. 

3 Bayes' theorem  

Richard Price found out an essay; “An Essay 

Towards Solving a Problem in the Doctrine of 

Chances”, in Thomas Bayes(1702-1761)’s 

posthumous and he recognized its importance. 

 

Three years after Bayes’ death, it was published on 

Philosophical Transactions of the Royal Society, in 

1763
[3]

. The essay greatly influenced to many 

European philosophers. Laplace applied Bayes’ 

theorem to many of  his works.  

 

In mid 19
th

 century, Boole made counterarguments to 

Bayes’ theorem. After that, many arguments had 

broken up  about its interpretation, application, and  

the arguments still continue today. 

 

Bayes' Theorem is a way of understanding how the 

probability that a theory is true is affected by a new 

piece of evidence. In the philosophy of science, it has 

been used to try to clarify the relationship between 

theory and evidence.  

 

Analyst’s State of Knowledge will change with a new 

evidence. Bayes’ theorem is a method to treat this 

change （Updating） with consistency. 

 

Bayes’ fundamental equation is given by the next 

equation: 

 

 

 

 

Where H: Prior knowledge of analyst, E: New 

evidence, j: Random variable, Pr(j/H): Prior 

distribution, Probability of j under the condition of 

knowledge H, Pr(j/HE): Posterior distribution, 

Probability of j under the condition of knowledge H 

and new evidence E, Pr(E/Hj):Likelihood of new 

evidence E under the condition of j and H are given,  

Pr(E/H) :normalization factor given by the following 

equation: 

Pr(E/H)=Pr(j/H)・Pr(E/Hj)        (2) 

 

For proving the adequacy of Eq. (1), consider the 

following relation. For two mutually independent 

events A, B, the following relations hold. They are 

pure relations between conditional occurrences of 

events without any meanings. 

 

(3) 
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Here consider the events A1, A2, A3, …. An. , which 

are mutually exclusive and have the following 

relation.    

A1+A2+A3+ ….+ An ＝ universal event.       (5) 

 

Then, 

 

(6) 

 

If Ai is replaced by j, the form of Eq. (1) is obtained. 

The relation of (1) is always true. Meaning or 

interpretation of each term is given, and the Eq. (1) 

becomes updating method with new evidence (Bayes' 

equation).  

 

Bayes’ equation for continuous distribution becomes 

as follows. 

 

(7) 

 

Where '(/E): posterior distribution,  (): prior 

distribution, L(E/):likelihood function, Probability 

of E’s occurrence under the condition  is given, : 

new evidence. 

 

Now, consider concrete expressions of prior and 

posterior distributions. If we can conduct many 

experiments, failure rate can be determined as  for a 

specific component. But, with few experiments, we 

cannot determine . In this case, it is possible to say 

that value of  roughly represents failure rate with the 

“state of knowledge”. It is represented by 

probabilistic distribution function(), which is prior 

distribution. 

 

Then, assume that failure rate  of a component is 

expressed by a gamma distribution 

( (2)= 1 ). 

 

 

 

since gamma distribution is given by, 

                                        (8) 

 

Next, “one time failure during 10000hours usage” is 

observed as a new evidence. The likelihood of this 

new evidence can be expressed by Poisson 

distribution which is given by:     

                           

  (9) 

      . 

Where failure time "r" is 1 and expected number "m" 

equals to 1000Then the likelihood becomes, 

 

(10) 

 

From the Bayes' equation, posterior distribution 

'/E) becomes as follows. 

 

(11) 

 

Where numerator of Eq. (11) is given by 

 

(12) 

 

Denominator of Eq.(11) is given by 

 

 

 

 

(13) 

 

Finally, posterior distribution becomes, 

 

(14) 

 

The posterior distribution is also gamma distribution 

with (). Mean of prior 

distribution is given by 

 

 

(15) 

Mean of posterior distribution is given by, 

 

 

 

 

(16) 

By the additional evidence E, mean of failure rate  

decreases to one-fourth (1/4) of previously expected 

value. 

 

4 Pair of conjugate distributions  

Take up the case in which prior distribution is gamma 

distribution and likelihood is expressed by Poisson 

distribution.  The posterior distribution is calculated 

by the following steps. 
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By changing the expression of parameters  as '＝

+k, '＝+T, then Eq.(17) is given by 

 

 

 

(18) 

The posterior distribution becomes gamma 

distribution and the parameter values can be obtained 

by simple arithmetic calculation. This pair of prior 

distribution and likelihood is called conjugate
[4]

. 

 

For the convenient usage to the interested readers, 

several pairs of conjugate distributions are shown 

below with changing assumptions of prior 

distribution, likelihood and posterior distribution. 

 

(1) Prior: gamma, Likelihood: gamma 

Posterior : gamma, Relation of parameters, 

''=＋'、''=＋'



where 

 is a specific failure rate value given as a 

new evidence. 

 

(2) Prior: Beta distribution, Likelihood: binomial 

distribution 

Posterior: Beta, Relation of parameters, 

  a' = a+k、 b' = b+N－k . 

 

(3) Prior: normal distribution, Likelihood: normal 

distribution 

Posterior: normal distribution, Relation of 

parameters, 

 

 

 

 

 

 

(4) Prior: log-normal distribution, Likelihood: 

log-normal distribution 

Posterior: log-normal distribution, Relation of 

parameters, 

 

 

 

 

 

 

 

5 Sequential and lump evaluations 

New evidence E1 is obtained, and then posterior 

distribution ’ is evaluated by Bayes’ theorem as 

shown in previous section.  

Consider the case that new evidence E2 is further 

obtained after the first evaluation. In this situation, 

we can again evaluate posterior distribution ’’by the 

following way. 

 

By the first evidence E1 it becomes 

 

(19) 

 

 

By the second evidence E2 it further becomes 

 

(20) 

 

Substitute the first Eq.(19) into the second Eq.(20), 

we obtain: 

 

 

 

 

 

                                       (21) 

Use the following relation between conditional 

occurrences of events. 

(22) 

 

L(E2,E1/) can be interpreted as a likelihood in which 

two evidences E1 and E2 are combined and occur at 

the same time. Then Eq.(21) becomes 

 

 

(23) 

 

The above Eq.(23) is the result of lump (one step) 

evaluation by the Bayes’ method. Eq. (21) equals to 

Eq. (23). This means that exactly the same result is 

obtained from the sequential (two steps) evaluation or 

lump (one step) evaluation for the existence of two 

evidences by Bayes’ method. 

 

6 Application of the Bayes’ theorem 

6.1 Data evaluation by Bayes’ theorem 

The procedure of data evaluation by Bayes’ theorem 

is performed by the procedure as shown in the 

following for a specific plant risk evaluation: 

(1) Determine prior distribution,  

(2) Get operating experience of a specific plant,  

(3) Determine likelihood function, and finally 

(4) Obtain posterior distribution by Bayes’ theorem. 

For the determination of prior distribution, some 

judgment is required by analysts, because many data 

sources do not clearly describe data conditions such 

as failure modes, environmental condition, produced 

company, etc. Several example practices for nuclear 
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applications are introduced in the subsequent sections 

in this chapter. 

 

6.1.1 Start of Diesel generator 

The data of Reactor Safety Study (RSS)
[1]

 are used 

for the determination of prior distribution. The RSS 

gives the median value as 0.03/demand with error 

factor 3 for the failure probability of “Start of Diesel 

generator” when it is demanded to work. 

 

Let us try to express the prior distribution by 

Log-normal distribution. Failure probability per 

demand is assumed to be expressed by the notation 

Q. 

 

The parameters and key statistical values are adjusted 

as follows. 

Q05=10
-2

 

Q95=10
-1

 

Median:m=SQRT(Q05xQ95) =SQRT(10
-3

) =0.032 

=ln(m)=ln(0.032)=-3.442 

= (ln Q95-ln Q05)/(1.64x2)  

= (-2.302-(-4.605))/3.28 =0.702 

Mean= exp(

) = exp( -3.442 +0.2464)

= exp（-3.1956）= 0.041 

Variance=exp(2

)[exp(


)-1]

= exp(-6.884+0.4928)·[1.637-1]= 0.0011 

 

Then, prior distribution becomes, 

 

 

 

(24) 

 

As plant specific data, there exist 4 times of failure 

among total 300 times of start tests. The likelihood of 

this evidence becomes as follows. 

 

 

(25) 

 

The prior and posterior distributions are shown in 

Figure 1. 

 

 

 

 

 

 

 

 

 

Fig. 1  Prior and posterior distributions for start of DG. 

 

In this present case, prior distribution and likelihood 

are not a pair of conjugate distributions.  So, the 

posterior distribution is obtained by Excel table, in 

which numerical calculations are performed for all 

the Qi from 0.006 to 0.17. 

 

The values of mean and variance are easily obtained 

from Excel table. Mean value of posterior 

distribution decreases to 0.018 and variance also 

decreases to 4.1x10
-5

. Smaller mean value and more 

narrow distribution of demand probability of the start 

of DG is obtained by the operational records of a 

plant. 

 

6.1.2 Failure rate of pressure sensor 

Failure rate of pressure sensor is given by ANSI/ 

IEEE Std-500 
[5]

 as follows: 

 maximum value        40  x10
-6

/h 

 recommended value     1.12 x10
-6

/h 

 minimum value        0.03 x10
-6

/h 

 

Above three values are considered as 95, 50=m, 05, 

respectively. Then, error factor becomes  
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From this value, 95 and 05 are re-evaluated as 

Follows, respectively;                        

 

 

 

 

The above results are reasonable by comparing with 

their original values. The prior distribution is 

assumed as Log-normal distribution. Then, parameter 

values become as follows; 

 

 

 

 

 

 

 

 

 

 

Prior distribution becomes as follows; 
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It is observed in a specific plant that 5 failures occur 

during total 1.5x10
5
 hours operation. Poisson 

distribution is assumed for the likelihood function. 

Expected failure time (m) becomes iT, and observed 

failure time r is 5. The likelihood function is given by 
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the following Eq. (28). 

 

(28) 

 

Posterior distribution is also obtained by Excel table 

as shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Prior and posterior distributions of failure rates of 

pressure sensor. 

 

From the Excel table, the following parameter values 

are obtained. 

 

 

 

 

6.2 Frequency of nuclear power plant accidents 

Occurrence frequency of any specific accidents in 

nuclear power plants can be evaluated by Bayes' 

method by the following ways: First suppose prior 

distribution. Then collect accident related cases, and 

these are used as new evidence. Several example 

practices for nuclear applications are introduced in 

the subsequent sections in this section. 

 

6.2.1 Fires in nuclear reactor compartment 

There are very few data about fires in nuclear power 

plants. As prior distribution, assume gamma 

distribution. 

 

(29) 

 

Above distribution has very wide range. 

 

 

 

Likelihood function is assumed as Poisson 

distribution as below, because evidence may be few 

events. 

 

                              (30) 

We assume that the collected evidence is that 10 fire 

cases occur during 300 reactor years. Parameters of 

posterior distribution become as follows, 

 

 

 

 

 

 

 

 

Above parameter values are obtained by the relation 

of conjugate distributions as shown in Chapter 4. 

 

 

 

 

 

 

 

 

Fig. 3  Occurrence frequency of fires in nuclear power 

plants. 

 

6.2.2 Core melt frequency with the experience of 

Fukushima Dai-ichi accidents 

At the Fukushima Dai-ichi accidents, three core melt 

accidents had happened. In Japan, there are about 50 

nuclear reactors and experienced operational time 

period is estimated as 1003 reactor·year until 2012. 

Then, core melt frequency is estimated as 

2.99x10
-3

/r·y. 

 

If we assume only three times of core melt accidents 

are very lucky cases, then put the following value 

equals to 0.01. 

 

 

                                       (31) 

 

Occurrence frequency is calculated as, T=10.045, 
1x10

-2
/r··y. The above value is considered as the 

upper limit of core melt frequency 99=1x10
-2

/r·y. 

 

In Japan, there are several near-miss accidents as 

follows which might cause core melt in the past. 

-Takahama (1979.11.3); Leakage of primary coolant, 

-Fukushima Dai-ni (1989.1.6);Failure of recirculation 

pump, 

-Mihama(1991.2.9); Steam generator tube rapture,  

-Tsuruga(1999.7.12); Leakage of primary coolant, 

-Hamaoka(2001.11.7); Explosion of hydrogen gas, 

and  

-Fukushima Dai-ichi (2011.3.11); Tsunami caused 

also the units 5 and 6 almost no heat sink and station 

power. 
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Those accidents are counted as 0.7 times of core melt 

accidents. Then, total 3.7 times core melt accidents 

happened in Japan. This value is considered 

as50=3.7x10
-3 

/ r·y. 

 

As prior distribution, parameters are adjusted as 

follows by using Gamma distribution. 

  mean =  =3.7x10
-3

 

    =3.29, = 889, for 99=1x10
-2

 

median = 3.33x10
-3

 

 

Here consider an expert’s opinion. Professor      

Rasmussen said E=1.5x10
 -5

/r·y. Take this opinion as 

new evidence and the likelihood function is assumed 

as the following form. 

 

 

 

(32) 

Where parameter  is the value how we believe the 

expert opinion. In this case, is put as 50, which 

means that we evaluate that Rasmussen predicted 50 

times smaller value from the true value (which could 

be existed.).  In Eq.(32), K =E·T is times of core 

melt accidents predicted by experts. The likelihood 

(Eq. (32)) reflects the expert opinion and analyst’s 

judgment. 

 

As the prior and likelihood are pair of gamma 

distributions, posterior distribution becomes gamma 

distribution, and parameters are deduced as follows, 

  mean = ' /' =1.2x10
-3

/ r·y 

    ' =6.99, ' = 5822 

 

Our believed value of core melt frequency thus 

becomes 1.2x10
-3

/r·y by considering Professor 

Rasmussen’s opinion. 

 

7 Discussions between favorable and 

critical peoples to the Bayes’ 

methods 

Arguments still continue among favorable and critical 

peoples about Bayes’ theorem. Their opinions can be 

briefly summarized as follows by citing several views 

and arguments from Ref. 
[6]

.  

 

It is not clear that prior distribution certainly exists, 

but it is used so easily. Even if it exists, there is not 

any method to identify it precisely. From above 

reasons, it is not possible to keep objectivity for the 

result obtained by Bayes’ method. On the contrary, 

the estimation based on the sampling method does 

not bring subjectivity to the theory
 [7]

. 

 

Both from pro-Bayesian and contra-Bayesian or non- 

Bayesian analysis we have to guess that some 

mathematical model is adequate one in reality. The 

main difference is that in a non-Bayesian analysis 

more important something may be swept away under 

the carpet 
[8]

. 

 

Engineers who represent their degree-of-belief by 

probability must be stout-hearted
 [9]

. 

 

There can be no question that it is extremely difficult 

to determine a person’s utility function even under 

the most ideal and idealized experimental conditions: 

one can almost say that it has yet to be done 
[10]

. 

 

I would like to object to the statement, repeatedly 

made, that a priori is unknown. It is ridiculous to say 

that a priori is a statement of one’s knowledge, and a 

modern work demonstrates that it is always known 

by judicious questioning it can be found 
[11]

. 

 

8 Concluding remarks 

Bayesian methods provide a logical framework for 

safety analysis of nuclear power plants. The 

frequentist methods seem to be objective, but they 

limit the available evidence to the only statistical 

values. In actual situation, however, we have to make 

judgment to decide what the evidence is. Furthermore, 

our knowledge about nuclear power plant is formed 

not only by statistical data but also from design 

considerations, operating environment and so on. 

Bayesian methods can translate these beliefs into 

numbers, and assessors become coherent. Then the 

group of assessors has high chances to reach a 

common decision. 

 

It is the author’s hope that readers find out usefulness 

of Bayes' theorem explained here, and utilize it for 

your future research activities. 
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