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Abstract: There are several methods for system reliability analysis such as reliability graphs, fault tree 

analyses, Markov chains, and Monte Carlo simulations. Among the existing methods, the reliability graphs 

are the most intuitive modeling method, but they are not widely used due to their limited expression power. In 

this paper, an intuitive and practical method for system reliability analysis named the reliability graph with 

general gates (RGGG) is reviewed. The proposed method introduces general gates to the conventional 

reliability graph method, which creates a one-to-one match from the actual structure of the system to the 

reliability graph of the system. A quantitative evaluation method is proposed by transforming the RGGG to an 

equivalent Bayesian network without losing the intuitiveness of the model. In addition, a method of analyzing 

the dynamic systems and repairable systems which uses the RGGG is introduced, and appropriate algorithms 

for the quantitative analyses are explained. It is concluded that the RGGG method is intuitive and easy-to-use 

in the analyses of static, dynamic, and repairable systems compared with other methods while its analysis 

results are the same as those of other methods.  
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1 Introduction
1
 

System reliability refers to the probability that an 

item will perform a required function when used for 

its intended purpose, under the stated conditions, for 

a given period of time
[1]

. Several methods are viable 

for system reliability analyses such as reliability 

graphs, fault tree analyses, Markov chains, and 

Monte Carlo simulations. Each method has its own 

peculiar features and those features should be 

considered when determining the most suitable 

method. Among the existing methods, the fault tree 

analysis is the most widely used due to its expression 

power, applicability to complex systems, and various 

tool supports. However, because analysts must draw a 

fault tree based on the logical relationships among 

the components in a system, the use of fault tree 

analyses become more and more cumbersome as 

systems become more complex. In order to reduce 

the amount of analysis errors, an intuitive method for 

system reliability analysis should be developed. 

Among the existing reliability analysis methods, the 

reliability graph is the most intuitive method for 

modeling target systems, but it has one serious 
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drawback. Since it has a limited expression power, it 

cannot be used widely for system reliability analyses. 

Kim and Seong proposed a reliability graph with 

general gates (RGGG), which is an intuitive and 

practical reliability analysis method, by extending the 

conventional reliability graph
[2]

. The proposed 

method introduces general gates to a conventional 

reliability graph. Therefore, it possesses the 

intuitiveness that is characteristic of a conventional 

reliability graphs and additional powers of expression. 

At first, the RGGG method was only developed for 

the reliability analysis of non-repairable static 

systems. Therefore, it cannot be applied if the failure 

of a system is related to a sequence of component 

failures. This system is defined as a dynamic system 

and the reliability of the system can be estimated 

using dynamic reliability analysis methods such as 

the dynamic fault tree and Markov chain. Recently, 

the capability of the RGGG was upgraded so that it 

can analyze dynamic systems
[3, 4]

. In addition, the 

RGGG was applied to repairable systems to analyze 

availability based on the Markov process
[5]

. 
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Fig.1 Four existing reliability analysis methods.  

(a) Reliability graph; (b) Markov chain; (c) Fault tree analysis; and (d) Monte Carlo simulation. 

 

This paper presents a general review of the RGGG 

method and the advantages of the RGGG method in 

reliability analyses. The remainder of the paper is 

structured as follows: Section 2 gives full details of 

the RGGG method and Section 3 introduces the 

extension of the RGGG to dynamic systems and 

repairable systems. In Section 4, the RGGG method 

is summarized and discussed.  

 

2 Reliability graph with general gates 

2.1 Reliability graph 

For a system reliability analysis method to be 

intuitive, a one-to-one match between the actual 

structure of the system and the system model should 

be guaranteed. A reliability graph is composed of 

nodes and arcs. A node represents a component in the 

system, while an arc is used to model the link 

between two components. Therefore, the reliability 

graph can make a one-to-one match between the 

actual structure of the system and the system model. 

An application of the four existing reliability analysis 

methods is shown in Fig. 1. The example system is a 

data delivery system from node A to node D, under 

random failures of five transmission lines, aAB, aAC, 

aCB, aBC, and aCD. This example system is from the 

node-pair (2-terminal) reliability evaluation. The 

node-pair reliability is the probability that at least one 

path exists between a source node and a target node 

in a directed network
[6]

. In this example, the system is 

successful if at least one path from node A to node D 

exists. In Fig. 1(b), the numbers in each state indicate 

the success and failure of five transmission lines in 

order of aAB, aAC, aCB, aBC, and aCD; 0 indicates a 

failure of the transmission line. The four states 

colored black are the sink states that correspond to 

the four minimal cut-sets of the system. In Fig. 1(d), 

the number in each parenthesis is the failure 

probability of the transmission line, and the numbers 

in each string are the generated random numbers for 

one realization. Among the four methods, it can be 

seen that the actual structure of the system is most 

easily understood through the reliability graph. In this 

sense, it is generally believed that reliability graph is 

the most intuitive method for understanding and 

analyzing the reliability of a system. 
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However, one serious shortcoming of the reliability 

graph is its low expression power; it can only express 

the characteristics of an OR gate. Suppose that node 

D in Fig. 1(a) requires inputs from nodes B and C. 

Then, it is not possible to describe the system 

intuitively using the reliability graph because the 

reliability graph originates from the subject of the 

node-pair network reliability. Therefore, in order to 

intuitively analyze general systems, the expression 

power of the reliability graph should be improved.  

 

2.2 Reliability graph with general gates (RGGG) 

In order to overcome the limitation of the reliability 

graph mentioned above, Kim and Seong proposed 

that additional general gates be added to the 

reliability graph
[2]

. Based on the fault tree analysis, 

OR, AND, and K-out-of-N gates are the most 

frequently used gates for system reliability analysis. 

Therefore, special graphical notations for the three 

gates are assigned as shown in Figs. 2(a) to 2(c). In 

addition, the general purpose node shown in Fig. 2(d) 

is proposed to maintain the intuitiveness of the 

reliability graph. The general purpose node is defined 

by the proper probability table that describes the 

characteristics of the node. 

 

 
 

Fig.2 Definition of gates for reliability graph with general 

gates. (a) OR gate; (b) AND gate; (c) K-out-of-N gate; and (d) 

general purpose gate. 

 

2.3 Quantification of the RGGG 

For the modeling to be as realistic as possible, it 

should be assumed that both nodes and arcs can fail 

in a reliability graph. A reliability graph with both 

node and arc failures can be transformed into an 

equivalent reliability graph with only arc failures, as 

shown in Fig. 3
[7]

. Therefore, in the evaluation 

methods for the RGGG, only arc failures are 

developed.  

 

 
 

Fig. 3 Transformation to a reliability graph with a perfect node:  

(a) the original network (with node and arc failures) and  

(b) the transformed network (with arc failures only). 

 

2.3.1 Transforming to Bayesian networks 

In case of directed acyclic graphs, the reliability 

graph can be transformed to an equivalent Bayesian 

network without losing the one-to-one match with the 

actual system structure. A Bayesian network 

(sometimes called belief network, causal probabilistic 

network, causal net, probabilistic cause-effect model, 

or probabilistic influence diagram) is a graphical 

network that represents the probabilistic relationships 

among variables
[8, 9]

. Bayesian networks have 

attracted much attention as a possible solution for the 

problems of decision support under uncertainty and 

are considered to be the most promising method for 

the estimation of software reliability
[9-11]

. In order to 

transform the RGGG to an equivalent Bayesian 

network, the probability table for each node in the 

RGGG must be determined. The following sections 

describe how to determine the probability table for 

each node in the equivalent Bayesian network. 

 

2.3.2 Modeling of RGGG 

G, a reliability graph with general gates as shown in 

Fig. 4, is a tuple G = (N, A, F) where 

 

A. ni: ith node of G (i = 0,1,…,t), where n0 is the 

source node and nt is the target node 

B. N = {ni│ i = 0,1,…,t} 

C. aij: the directed arc from ni to nj (i = 0,1,…,t-1 

and j = 1,2,…,t and i ≠ j) 

D. A = {aij│there is a directed arc from ni to nj, i = 

0,1,…,t-1 and j = 1,2,…,t and i ≠ j} 

E. fi: the node function for ni (i = 1,2,…,t). There 

is no node function for n0. 

F. F = {fi│i = 1,2,…,t} 
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G. F(x1,…,xn) is symmetric if f(x1,…,xi,…,xj,…,xn) 

= f(x1,…,xi,…,xj,…,xn), where i = 1,…,n and j = 

1,…,n and i ≠ j. 

 

 
 

Fig. 4 Modeling reliability graph with general gates. 

 

For a node nj in G, the following are defined. 

 

H. A node ni is a parent node of nj if there is a 

directed arc aij. 

I. Uj: a set of parent nodes for node nj 

J. sj: the number of parent nodes for nj 

K. yj: the Boolean variable for the output of nj (yj 

= 1 if nj is in the success state, yj = 0 if nj is in 

the failure state) 

L. wij: the Boolean variable for aij (wij =1 if aij is 

in the success state, wij=0 if aij is in the failure 

state) 

M. xij: the Boolean variable for the input into nj 

originated from ni ∈ Uj. xij = yiwij 

N. rij: the reliability of aij, i.e. rij = Pr{aij is in the 

success state} = Pr{wij = 1} 

 

To determine the probability table for nj, the success 

and failure probabilities for given states of the parent 

nodes should be evaluated. For symmetric node 

functions such as the node functions for the OR, 

AND, and K-out-of-N gates, the success and failure 

probabilities are functions of only the number of 

successful parent nodes, i.e. the parent nodes in the 

success state. Thus, for the given states of a parent 

node, the followings are defined. 

 

O. v: the serial number for given states of parent 

nodes )2,...,2,1( jS
v   

P. sj
(v)

: the number of successful parent nodes for 

the vth set of parent node states 

Q. Uj
(v)

: the set of successful parent nodes for node 

nj for the vth set of parent node states 

R. nlj
(v)

: the lth successful parent node for node nj 

for the vth set of parent node states (l = 

1,…,sj
(v)

); i.e. },,{ )(

)(

)(

1

)( v

v

v

j

v

j nnU   

S. alj
(v)

: the arc from nlj
(v)

 to nj 

T. ylj
(v)

: the Boolean variable for the output of jlj
(v)

 

U. wlj
(v)

: the Boolean variable for alj
(v)

 

V. rlj
(v)

: the reliability of alj
(v)

 

W. Pj
(v)

: Pr{yj = 1 for vth set of parent node states 

for node nj} 

X. Qj
(v)

: Pr{yj = 0 for vth set of parent node states 

for node nj}. Qj
(v)

 = 1 – Pj
(v)

 

 

From now on, the Pj
(v)

’s for the node functions of the 

OR, AND, and K-out-of-N gates are evaluated. 

 

2.3.3 OR node 

The node function for a node with an OR gate (Fig. 

2(a)) is given as:
[12] 

 

                            . (1) 

 

Because xiA = yiwiA (i = 1,2,…,sA), Eq. (1) can be 

rewritten as: 
 

                       

                .     (2) 
 

For the parent nodes that are in the failure state, yi’s 

are 0 and the corresponding terms in Eq. (2) are 

removed. Thus, when sA
(v)

 ≥ 1, Eq. (2) can be 

rewritten as: 
 

                        

    
   
   
   

    
  
   
 

   
 
  
   
 

   
.   (3) 

 

By definition, ylA
(v)

 = 1 (l = 1,2,…,sA
(v)

). Thus, 
 

                       

    
       

  
   
 

   
.     (4) 

 

The success probability is given as: 
 

  
                   

       
  
   
 

       

          
          

     
  
   
 

                  (5) 

 

If wlA
(v)

’s (l = 1,2,…,sA
(v)

) are s-independent of 

each other: 
 

  
            

         
  
   
 

     

          
   
 

  
   

         (6) 
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When sA
(v)

 = 0, PA
(v)

 = 0. Therefore, PA
(v)

 is given as: 

 

  
   

  
         

    
  
   
 

             
   

    

        
   

              

  

         (7) 

 

As mentioned before, QA
(v)

 is given as: 

 

  
   

     
   
       (8) 

 

Equations (7) and (8) can be used to determine the 

success and failure probabilities for given states of 

the parent nodes in the probability table for an OR 

node. For example, the probability table for an OR 

node when sA = 2 is given in Table 1. 

 

Table 1 Probability table for an OR node with two inputs 

 

2.3.4 AND node 

The node function for a node with an AND gate (Fig. 

2(b)) is given as: 

 

                              

                .    (9) 

 

A node with an AND gate can be in the success state 

only when all parent nodes are in the success state. 

Therefore, for PB
(v)

 to have a non-zero value, all yl’s 

(l = 1,2,…,sB) should be 1, which means that sB
(v)

 = 

sB. Thus, when sB
(v)

 = sB: 

 

  
                           =1}. 

         (10) 

 

If all wlb’s (l = 1,2,…,sB) are s-independent of each 

other, 

 

  
                 

  
        (11) 

 

If there is at least one yl = 0 (l = 1,2,…,sB), PB
(v)

 = 0. 

Thus, 

 

  
   

   
     

  
          

   
    

                     
     (12) 

 

  
        

          (13) 

 

The probability table for an AND node can be 

determined using Eqs.(12) and (13). An example 

probability table for an AND node in case of n = 2 is 

given in Table 2. 

 

Table 2 Probability table for an AND node when n = 2 

 

2.3.5 K-out-of-N node 

The K-out-of-N gate means that the output of a node 

becomes successful when there are at least k 

successful inputs to the node. The node function for a 

node with a K-out-of-N gate (Fig. 2(c)) is given as: 

 

                 

                                 

         (14) 

 

For a node with a K-out-of-N gate to be successful, 

there should be at least k successful parent nodes. As 

mentioned before, PC
(v)

 is a function of only the 

number of successful parent nodes, because the node 

function for a node with a K-out-of-N gate is 

symmetric. When sC
(v)

 ≥ k, the success probability is 

given as: 
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Table 3 Probability table for a K-out-of-N node (k = 2, n = 3) 

y1 Success (S) Failure (F) 

y2 S F S F 

y3 S F S F S F S F 

y
C
 = 1 

(success) 

r1Cr2Cr3C + (1 – r1C)r2Cr3C + (1 – 

r2C)r1Cr3C + (1 – r3C)r1Cr2C 
r1Cr2C r1Cr3C 0 r2Cr3C 0 0 0 

y
C
 = 0 

(success) 

(1 – r1C)(1 – r2C)(1 – r3C) + r1C(1 

– r2C)(1 – r3C) + r2C(1 – r1C)(1 – 

r3C) +  r3C(1 – r1C)(1 – r2C)  

1 – r1Cr2C 1 – r1Cr3C 1 1 – r2Cr3C 1 1 1 

 

PC
(v)

 = Pr{there are more than k successful inputs 

among sC
(v)

} 

 = Pr{k successful inputs} + … 

 + Pr{ sC
(v)

 successful inputs}.   (15) 

 

Because the Boolean variables for sC
(v)

 successful 

parent nodes are all 1, 

 

PC
(v)

 = Pr{k successful arcs} + …  

+ Pr{ sC
(v)

 successful arcs} 

=     
    

  
   

   
      (16) 

 

Where 
)(

,

v

mCP  is defined as: 

)(

,

v

mCP = Pr{there are exactly m successful arcs among 

sC
(v)

} (m = k,k+1,…, sC
(v)

). 

If 
)(v

lCw ’s (l = 1,2,…, sC
(v)

) are s-independent of each 

other: 

 

    
       

       
   

         
   

      
  
   
  

     

        
   
      

  
   
    

      
  
   
      

     
  
   
 

     

(17) 

 

Equation (17) consists of    
   

     
  terms. When the 

reliabilities of the arcs are identical and the same 

value is defined as r (
)(

1

v

cr =...= rr v

cs v
c

)(
)( ), Eq. (17) 

can be simplified as: 

 

    
       

   

     
          

   
      (18) 

 

When sC
(v)

 < k, PC
(v)

 = 0. Thus, 

 

  
     

      
      

   

   
       

      

        
      

    (19) 

 

  
   

     
   
       (20) 

 

Using Eqs. (17) (or sometimes (18)), (19), and (20), 

the probability table for a K-out-of-N node can be 

determined. For example, the probability table for a 

K-out-of-N node when n =3 and k = 2 is given in 

Table 3. 

 

The probability tables for nodes with other gates such 

as an XOR gate can be determined using similar 

methods. 

 

 
 

Fig. 5 RGGG for the example system. 

 

2.4 Examples 

The RGGG method is applied to a simple example 

system, shown in Fig. 5, to demonstrate the 

usefulness of the proposed method. An OR gate is 

applied to node B and an AND gate is applied to node 

D. The reliabilities of aAB, aAC, aCB, aBD, and aCD are 

assumed to be 0.99, 0.98, 0.79, 0.87, and 0.77, 

respectively. The probability table for each node is 

determined based on the equations provided in 

Section 2.3 and the system reliability can be easily 
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obtained with various commercial or free software 

tools for Bayesian networks such as Hugin
TM

, 

Netica
TM

, and Microsoft Belief Networks (MSBNx). 

Figure 6 shows the evaluation result using Hugin
TM

 

and the reliability of the example system is evaluated 

to be 0.6551. In order to verify the evaluation result, 

the example system is analyzed using the fault tree 

shown in Fig. 7. The minimal cut-sets are found to be 

{aAC}, {aBD}, {aCD}, and {aAB, aCB}, and the 

reliability of the example system is given as:  

 

}.

Pr{1

}Pr{1

CBABCDBDAC

CDBDACBDACAC

CBABCDBDACsys

wwwww

wwwwww

wwwwwR







(21) 

 

 
 

Fig. 6 Reliability analysis of the example system  

using HuginTM. 

 

 
 

Fig. 7 Fault tree for the example system. 

 

Because the terms in the second line of Eq. (21) are 

mutually exclusive, Eq. (21) can be calculated as 

 

Rsys  = 1 – [(1 – rAB) + rAB(1 – rBD) + rAB rBD(1 – rCD) 

+ rAB rBD rCD(1 – rAB)(1 – rCB)] 

 = 0.655123.      (22) 

 

 
 

Fig. 8 Modeling of the digital plant protection system with the RGGG and with a fault tree. 
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From Fig. 5 and Fig. 7, it can be seen that the RGGG 

method provides a much easier method of modeling 

and understanding the structure of the system 

compared with the fault tree method, while the results 

from both methods are equivalent. For reliability 

analysis of complex systems, RGGG provides more 

accurate results compared with the fault tree due to 

the results of RGGG not possessing truncation errors, 

which are generally included in large fault tree 

analyses. 

 

Figure 8 confirms the intuitive power of the RGGG 

method when applied to a real complex system. Kim 

and Seong
[2]

 modeled a digital plant protection 

system for a nuclear power plant using an RGGG and 

a fault tree. A trip case caused by low pressurizer 

pressure was analyzed. The failure scenario was 

modeled through only one page with the RGGG, but 

through 64 pages with the fault tree: the same 

quantitative result was calculated in each case. 

 

3 Extension of the RGGG 
As with the conventional fault tree method, the 

RGGG method was developed for the reliability 

analysis of non-repairable static systems. In order to 

assess the reliability of dynamic systems and the 

availability of repairable systems, the dynamic fault 

tree
[13]

 and repairable fault tree
[14, 15]

 methods were 

proposed and various research on the evaluation 

techniques has been conducted. Similar approaches 

have been performed in order to enhance the 

advantages of the RGGG method. In this section, two 

extensions proposed to the original formalism of the 

RGGG are introduced: the dynamic RGGG
[3, 4]

 and 

the repairable RGGG
[5]

.  

 

3.1 Dynamic RGGG 

A dynamic fault tree technique was developed to 

handle the difficulties that arise in the reliability 

analysis of fault-tolerant computer systems when 

critical applications are complicated by several 

factors
[13]

. Four dynamic gates were adopted in a 

conventional fault tree method: a functional 

dependency (FDEP) gate, a spare gate (a cold spare 

(CSP) gate, a hot spare (HSP) gate, and a warm spare 

(WSP) gate), a priority AND gate (PAND), and a 

sequence-enforcing (SEQ) gate. Each dynamic gate 

can express the dynamic failure process that is related 

to the failure sequence of the component parts. The 

dynamic fault tree is an effective technique for 

modeling dynamic systems. However, an intuitive 

modeling method needs to be developed for easy 

modeling of real dynamic systems and to ensure that 

real systems can be understood easily from a diagram 

of the model. To enable the RGGG to model dynamic 

systems, additional dynamic nodes are introduced 

based on the four dynamic gates of the dynamic fault 

tree as shown in Fig. 9.  

 

 
 

Fig. 9 The dynamic nodes of the dynamic RGGG: (a) a PAND 

node; (b) a WSP node; and (c) an SEQ node. 

 

3.1.1 Addition of dynamic nodes 

(a) PAND node 

Figure 9(a) shows a PAND node. Node E (nE) fails 

only if both signals from node 1 (n1) and node 2 (n2) 

are disconnected and the signal from n1 is 

disconnected before that from n2. 

 

(b) Spare node 

Figure 9(b) shows a spare node. The signal from n1 is 

the primary input signal and the signal from n2 is the 

spare input signal. The letter w in indicates that nF is 

a WSP node. The failure rate of spare input is 

reduced by a dormancy factor α ∈ [0, 1]. The spare 

node fails only if the primary signal and all spare 

signals are disconnected. 

 

(c) SEQ node 

Figure 9(c) shows an SEQ node. The input signals are 

constrained to be disconnected in a particular order; 

the SEQ node fails if, and only if, all input signals are 

disconnected. The constrained disconnection order is 

from top to bottom. 

 

A novel FDEP node is not required in the RGGG as 

the existing RGGG can demonstrate the property of 

an FDEP gate using the OR nodes only. 

 

3.1.2 Quantification of dynamic nodes 

As the novel dynamic nodes are proposed, methods 

for creating the probability tables of those nodes are 
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introduced for the quantitative assessment. A 

discrete-time method 
[16,17]

 is employed to determine 

the probability tables. 

 

 
 

Fig. 10 Discretization of the process time. 

 

As shown in Fig. 10, the line of the total process time 

(T) is divided into n equal intervals. The time of one 

interval is defined as t. The output of each node is 

one of {I1, I2, …, In, I∞}. If the output of a certain 

node is Ik, the node fails in the kth interval; and I∞ 

denotes that the node never fails during the total 

process time. If Pij
k
 denotes the probability that an arc 

(aij) from node i (ni) to node j (nj) fails in the kth 

interval, and if Fij(t) denotes the cumulative failure 

distribution function of aij, Pij
k
 can be derived as 

follows: 

 

 dt
d

P kt

tk

k

ij
dt

(t)Fij

)1(       (23) 

 

If the total process time and the discretization number 

(n) are decided, the probabilities (Pij
k
) of all the arcs 

for all values of k (k = 1, 2, … , n, ∞) can be derived 

using Eq. (23) before creating the probability tables. 

 

In order to estimate accurate reliability, the 

discretization number should be increased. However, 

as n increases, the probability table of each node 

becomes more complex. The number of blanks that 

should be filled for a probability table of a node with 

two inputs is (n+1)
3
. Therefore, a set of rules for 

creating the probability table of each dynamic node is 

developed. First, let the outputs of n1, n2, n3, nE, nF, 

and nG be Ix, Iy, Iz, Ie, If, and Ig, respectively ( x, y, z, e, 

f, g ∈ 1, 2, …, n, ∞). 

 

(a) PAND node 

The rules for creating the probability table of the 

PAND node shown in Fig. 9(a) are explained. In the 

table, each blank that is defined by x, y, and e can be 

filled on the basis of the following rules: 

 

A. If e > y,  

0. 

 

B. If e = y ≤ x,  

Pr{a1E fails before the eth interval} · (1 – Pr{a2E 

fails before the eth interval}). 

 

C. If e ≤ x, e < y, 

Pr{a1E fails before the eth interval} · Pr{a2E fails 

at the eth interval}. 

 

D. If e = y > x, 

1 – Pr{a2E fails before the eth interval}. 

 

E. If x < e < y, 

Pr{a2E fails at the eth interval}. 

 

F. If e = ∞, 

1 – (sum of the other probabilities in the same 

row). 

 

Table 4 Probability table for a PAND node for n=3 

  n
E 

 

n
1 

 n
2 

 I
1
  I

2
  I

3
  I

∞
  

I
1
  

I
1
  0  0  0  1  

I
2
  0  1 – P

2E

1

  0  1-Σ  

I
3
  0  P

2E

2

  1 - P
2E

1 

- P
2E

2

  1-Σ  

I
∞
  0  P

2E

2

  P
2E

3

  1-Σ  

I
2
  

I
1
  0  0  0  1  

I
2
  0  P

1E

1

(1 - P
2E

1

)  0  1-Σ  

I
3
  0  P

1E

1

P
2E

2

  1 - P
2E

1 

- P
2E

2

  1-Σ  

I
∞
  0  P

1E

1

P
2E

2

  P
2E

3

  1-Σ  

I
3
  

I
1
  0  0  0  1  

I
2
  0  P

1E

1

(1 - P
2E

1

)  0  1-Σ  

I
3
  0  P

1E

1

P
2E

2

  (P
1E

1 

+ P
1E

2

)(1 - P
2E

1 

-P
2E

2

)  1-Σ  

I
∞
  0  P

1E

1

P
2E

2

  (P
1E

1 

+ P
1E

2

)P
2E

3

  1-Σ  

I
∞
  

I
1
  0  0  0  1  

I
2
  0  P

1E

1

(1 - P
2E

1

)  0  1-Σ  

I
3
  0  P

1E

1

P
2E

2

  (P
1E

1 

+ P
1E

2

)(1 - P
2E

1 

-P
2E

2

)  1-Σ  

I
∞
  0  P

1E

1

P
2E

2

  (P
1E

1 

+ P
1E

2

)P
2E

3

  1-Σ  

 

When the probability table is filled by using rules i to 

v, the case where the value of e is ∞ is excluded. 
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Furthermore, because the sum of the probabilities in 

each row should be 1, rule vi is applied. Table 4 

shows the probability table for a PAND node; the 

table is based on the rules of the PAND node for 

n = 3. For an arbitrary n, a probability table can be 

obtained based on the six abovementioned rules. 

 

(b) Spare node 

The rules for creating the probability table of the 

WSP node shown in Fig. 9(b) are explained. Because 

the CSP and HSP nodes are types of WSP nodes 

(where the dormancy factor (α) is 0 for CSP and 1 for 

HSP), only the WSP node is described. In the table, 

each blank that is defined by x, y, and f can be filled 

on the basis of the following rules: 

 

A. If f > x, y, 

0. 

 

B. If f < x, y, 

Pr{a1F fails at the fth interval} · Pr{a2F fails at or 

before the fth interval} + Pr{a1F fails before the 

fth interval} · P{a2F fails at the fth interval}. 

 

C. If x < f < y, 

Pr{a2F fails at the fth interval}. 

 

D. If y ≤ f < x, 

Pr{a1F fails at the fth interval}. 

 

E. If f = x < y, 

Pr{a1F doesn’t fail before the fth interval} · 

Pr{a2F fails at or before the fth interval} + 

Pr{a1F fails before the fth interval} · Pr{a2F fails 

at the fth interval}. 

 

F. 1 – (sum of the other probabilities in the 

same row). 

 

When the value of Pr{a2F fails at the fth interval} is 

calculated in rules ii, iii, and v, the period of the spare 

status of a2F should be distinguished from the period 

of the active status of a2F, because the failure rates of 

each status differ in terms of the dormancy factor. In 

the dynamic fault tree, the inputs of the spare gate are 

only basic events
[13]

. If the RGGG also allows a spare 

node to have only basic events, which means that n1 

and n2 have no input, the probability table can be 

filled on the basis of rules ii and vi because the x and 

y values are both ∞. Therefore, the task of filling the 

table becomes simple. 

 

(c) SEQ node 

The rules for creating the probability table of the 

SEQ node shown in Fig. 9(c) are explained. The SEQ 

node only allows basic events as inputs excepting n1; 

because if n2 and n3 have inputs, the SEQ node 

cannot constrain the failure order of the inputs. 

Therefore, only the case in which y and z are ∞ is 

described. Each blank under that case can be filled in 

on the basis of the following rules: 

 

A. If g < 3,  

0. 

 

B. If 3≤ g < x+2,  

Pr,, cba {a1G fails at the ath interval} · Pr{a2G 

fails at the bth interval} · Pr{a3G fails at the cth 

interval}, 

when  a + b + c = g. 

 

C. If g ≥ x+2, 

Pr1+Pr2. 

Pr1 = Pr,, cba { a1G fails at the ath interval} · 

Pr{a2G fails at the bth interval} · Pr{a3G fails at 

the cth interval}, 

when  1 ≤ a < x–1, and a + b + c = g. 

Pr2 = Pr{a1G does not fail before the xth interval}  

Pr,, cba {a2G fails at the bth interval} · Pr{a3G 

fails at the cth interval}, 

when  b + c = g – x. 

 

D. If g = ∞,  

1 – (sum of the other probabilities in the same 

row). 

 

In rule ii, the bth interval does not mean the real bth 

interval in the total process time, rather it indicates 

that a2G fails after b intervals from the interval in 

which a1G fails. For example, if g = 7 and a = 2, b = 

3, and c = 2, then a1G fails at the 2nd interval, a2G 

fails at the 5th interval, and a3G fails at the 7th 

interval. This outcome is due to the properties of the 

SEQ node, where a2G cannot fail before a1G fails and 

a3G cannot fail before a2G fails. 
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Fig. 11 Block diagram of the cardiac assist system. 

 

As the dynamic RGGG uses a discrete time method, 

it can avoid the state space explosion problem of the 

Markov chain method, which is widely employed for 

dynamic reliability analyses. For example, assume 

that a dynamic system is composed of k components 

and the state of each component can be either a 

success or a failure. If this system is analyzed using 

the Markov method, 2
k
 states are needed. Therefore, 

as k increases, the complexity of the calculation 

increases exponentially. Whereas in the dynamic 

RGGG method when n is the number of time 

discretizations, (n+1)
3
 blanks should be filled in the 

probability table of each node (component). 

Therefore, the total of blanks in the RGGG is 

(n+1)
3
∙k and as k increases, the complexity of the 

calculation increases linearly with k, not 

exponentially. Consequently, the RGGG method has 

a great advantage, particularly when the target system 

is very complex. 

 

3.1.3A software tool for the dynamic RGGG 

The accuracy of the dynamic RGGG method is 

limited due to the assumption of discrete time, but it 

can be ensured as the number of time discretizations 

increases. A software tool to evaluate the dynamic 

RGGG was developed using the algorithms explained 

in Section 3.1.2. Therefore, the almost accurate 

results can be computed and the conventional static 

RGGG can also be estimated using the tool. The 

software tool is utilized to calculate the reliability of 

an example system in the following section. 

 

3.1.4 Example 

In this section, the ability of the proposed dynamic 

RGGG method is verified through application in a 

cardiac assist system
[18, 19]

. The block diagram of this 

system is shown in Fig.11 and it has two dynamic 

properties: the backup CPU is a warm spare for the 

primary CPU and failure of either the crossbar switch 

or the system supervisor results in failures in both the 

primary and backup CPU. A detailed explanation of 

the cardiac assist system can be found in References 

[18] and [19]. 

 

Figures 12 and 13 show the dynamic fault tree and 

dynamic RGGG for the example system, respectively. 

From these two figures, it can be seen that the RGGG 

models the system more intuitively than the dynamic 

fault tree. The RGGG has an almost identical 

structure as the block diagram of the actual system in 

Fig. 11.

Fig. 12 Dynamic fault tree of the cardiac assist system. 
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Fig. 13 Dynamic RGGG of the cardiac assist system. 

 

In order to compare the evaluation result of each 

method, the dynamic fault tree is evaluated using a 

demonstration version of the commercial software 

tool Relex Studio 2008, and the reliability of the 

example system is determined to be 0.609544. The 

RGGG is evaluated using the software tool developed 

by the authors; Table 5 shows the evaluation results 

of the RGGG with an increasing discretization 

number (n). Errors are detected when the results of 

the RGGG are compared with those of Relex Studio, 

but it can be verified that the error becomes smaller 

as n increases; when n is 200, the numerical 

difference is smaller than 10
-5

.  

 

Table 5 Evaluation results of the RGGG 

n Reliability 

10 0.6096437 

20 0.6095939 

50 0.6095641 

100 0.6095541 

150 0.6095508 

200 0.6095492 

 

3.2 Repairable RGGG 

Conventional risk analysis methods assume that the 

target system is a non-repairable system, which 

means that the systems are not repaired once it fails. 

Reliability is the probability that a system performs a 

specified function or mission under given conditions 

for a prescribed time. In non-repairable systems, 

reliability is a proper concept for representing system 

safety. However, many real world systems, such as 

automobiles, airplanes, computers, and nuclear power 

plants, are repairable systems. Repairable systems are 

those that are repaired when they fail. This is done by 

repairing or replacing the failed components in the 

system. Availability is defined as the probability of a 

system performing a specified function or mission 

under given conditions at a prescribed time
[20]

. Thus, 

the availability of repairable systems is focused on 

instead of the reliability. 

 

3.2.1 Availability of simple repairable process 

In repairable systems, two types of distribution are 

considered: failure distribution and repair distribution. 

A failure distribution describes the time required for a 

component to fail and a repair distribution describes 

the time required to repair a component. The 

availability of a simple repairable process requires a 

Markov analysis. Figure 14 presents a Markov 

transition diagram of a repairable process with 

constant failure and repair rates
[21]

. 

 

 
Fig. 14 Markov transition diagram for a simple repair process. 

  

In a repairable system, components have two states: a 

normal state and a failed state. Let x(t) be an indicator 

variable defined by x(t) = 1, if the component is in a 

failed sate at time t, and x(t) = 0, if the component is 

in a normal state at time t. The definition of the 

conditional failure rate λ and repair rate μ can be used 

to give: 

 

Pr{1|0} ≡ Pr{x(t+dt)=1|x(t)=0} = λdt 

Pr{0|0} ≡ Pr{x(t+dt)=0|x(t)=0} = 1 - λdt 

Pr{1|1} ≡ Pr{x(t+dt)=1|x(t)=1} = 1 - μdt 

Pr{0|1} ≡ Pr{x(t+dt)=0|x(t)=1} = μdt  (24) 
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Table 6 Probability table for an OR node in a repairable system 

 

y1 = 1 

(success) 

y1 = 0 

(failure) 

y2 = 1 

(success) 

y2 = 0 

(failure) 

y2 = 1 

(success) 

y2 = 0 

(failure) 

yA = 1 

(success)    
0 

yA = 0 

(failure)  
  

1 

 

The term Pr{x(t+dt)=1|x(t)=0} is the probability of 

failure at (t+dt), given that the component is working 

at time t, and so on. 

 

Unavailability is the reverse concept of availability. 

That is, unavailability Q(t) equals 1 – A(t). In this 

repairable process, the unavailability Q(t+dt) is the 

probability of x(t+dt)=1, which is expressed in terms 

of the two possible states of x(t) and the 

corresponding transitions to x(t+dt)=1: 

 

Q(t+dt) = Pr{x(t+dt) = 1} 

= Pr{1|0}Pr{x(t)=0} +Pr{1|1}Pr{x(t)=1} 

  = λdt[1-Q(t)] + (1-μdt)Q(t),  (25) 

 

This identity can be rewritten as: 

 

Q(t+dt) – Q(t) = dt(-λ-μ)Q(t) + λdt 

dQ(t)/dt = - (λ+μ)Q(t) + λ,    (26) 

 

with the initial condition at t=0 of Q(0) = 0,  

and the solution of this linear differential equation is:  

Q(t) = )1( )( te 



 


,    (27) 

Since Q(t) = 1 – A(t),  

A(t) = )1( )( te 



 


,   (28) 

 

Finally, the steady state availability can be obtained 

as follows: 

 

A(∞) =





.      (29) 

This result is used for analyzing the availability in the 

RGGG method.  

 

3.2.2 Independent repairable system 

If there are sufficient repairmen for a repairable 

system, then every component can be repaired 

immediately upon failure. Assume that other 

components cannot be affected when one component 

fails or is being repaired. Then, each component is 

independent of the other components’ behavior. This 

is called an independent repairable system. Table 6 

shows the probability table for an OR node with two 

inputs in a repairable system when λi, and μi represent 

the failure rate and repair rate of an arc from node i to 

target node A, respectively. The probability tables for 

an AND node and K-out-of-N node in a repairable 

system can be similarly derived.  

 

 
Fig. 15 Model of the RGGG for a dependent series repairable 

system. 

 

3.2.3 Dependent series repairable system 

When one component fails in a series repairable 

system, then the system also fails. Therefore, the 

system is immediately in a repair state if one 

component fails. At this time, if other components of 

this series system shut down and fail no more, each 

component is no longer independent. In this system, 

it is not possible for two or more components to be 

simultaneously in the repair state. This dependence is 

defined as a shut down dependence. The model of the 

RGGG for the dependence series repairable system is 

shown in Fig. 15. The thick outline of the nodes 

denotes that the components are repairable and a 

vertical line at the right of the node indicates that 

each component in the series system has the 
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characteristic of shutdown dependence. In this 

dependent series repairable system, the notation 

definitions are as follows: 

 

Pi = Pr{yi in the success or normal state}  

Pij = Aij =





.      (30) 

The components cannot be in the repair state 

simultaneously; therefore, the calculation algorithm 

should be as follows: 

 

P2 = P1P12/(1-(1-P1)(1-P12)).    (31) 

 

Using this formula, the probability table can be 

determined and is shown in Table 7. 

 

Table 7 Probability table for a node in the dependent series 

repairable system 

 y1 = 1 (success) y1 = 0 (failure) 

y2 = 1 

(success) 



1P
 0 

y2 = 0 

(failure) 



1

1
P

  1 

 

3.2.4 K/M redundant parallel repairable system 

A K-out-of-M redundant parallel repairable system is 

similar to an independent K-out-of-M system. When k 

or more components are at a normal state among m 

parallel input nodes, the system is in a normal state. In 

contrast, when less than the k components are in a 

normal state, the system fails. That is, if the number of 

components in the repair state is more than (m-k), the 

system is in a repair state. If the system shuts down 

and the other (k-1) components shut down and fail no 

more when the (m-k+1) components are in the repair 

state, the components are no longer independent. This 

dependence is defined as a shutdown dependence. It 

requires another assumption in the K-out-of-M 

redundant parallel repairable system. If there are not 

enough repairmen, then m components cannot be 

repaired at one time. This dependence is defined as 

the repair dependence. If there are only L repairmen 

(L<m), only L components can be repaired at the 

same time.  

 

Figure 16 presents the model of the RGGG for the 

K-out-of-M redundant parallel repairable system. The 

thick outline of the nodes represents the components 

that are repairable and the D-shaped notation is added 

at the right of the node, which means that all input 

components in the redundant parallel repairable 

system have characteristics of shutdown dependence. 

Additionally, in the D shape, the repair dependence 

can be represented by writing the number of 

repairmen denoted by L. 

 

 
Fig. 16 Model of the RGGG for the K/M redundant parallel 

repairable system. 

 

The system with m identical components has (K+1) 

possible states which, respectively, express the state 

with 0, …, K components at the failure state and are 

denoted by the numbers 0, …, K. Figure 17 shows a 

state transition diagram of a system with m identical 

components. Pi denotes the probability of the system 

at state i. The square represents the state and the 

arrow between the squares presents the state 

transition. The rate of transition from state i-1 to i is 

ai, whereas bi expresses the rate of transition from 

state i to i-1. 

 

 
Fig. 17 State transition diagram of the system with M identical 

components. 

 

Pi : probability of the system which has i number of 

components at repair state. 

ai : rate of transition from state i-1 to i.  

bi : rate of transition from state i to i-1. 

 

When the system is at a steady state, both ai and bi are 

constant and the state probability Pi is not changed. 

Therefore, the probability shifted in any state equals 

the one shifted out of the same state. Then, the 

following relations can be obtained: 
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Table 8 Probability table for a node in the K/M redundant parallel repairable system 

(K=2, M=3, L=1) 

y1 1 0 

y2 1 0 1 0 

y3 1 0 1 0 1 0 1 0 

yM = 1 (μ2+3λμ) / (μ2+3λμ+6λ2) μ / (μ+3λ) μ / (μ+3λ) 0 μ / (μ+3λ) 0 0 0 

yM = 0 6λ2 / (μ2+3λμ+6λ2) 3λ / (μ+3λ) 3λ / (μ+3λ) 1 3λ / (μ+3λ) 1 1 1 

 

State 0 :  P1b1 = P0a1,  =>  P1 = P0·(a1/b1) 

State i:  Pi-1ai + Pi+1bi+1 = Piai+1 + Pibi  

Pi+1 = Po 

j

ji

j
b

a
1

1



  ,  i = 1 … k-1  (32) 

Assume λ is the failure rate of each component; then, 

the rate of transition is expressed as follows: 

 

ai = (m-i+1)λ.       (33) 

 

Assume μ is the repair rate of each component. At 

state i, i components fail, but the number of 

components that are being repaired is dependent on L. 

Therefore, the rate of transition is as follows: 

 

bi  =  iμ,         when i ≤ L,  

   =  Lμ         when i > L,   (34) 

 

Then, the calculation formulas of the system normal 

state probability are obtained as follows:  

 

G  = i

k

i P0  

PR(Availability)  = 
G

Pikm

i



 0 .    (35) 

 

Using this formula, the probability table can be 

determined. Table 8 shows a probability table for a 

node in a 2-out-of-3 redundant parallel repairable 

system with 1 repairman. 

 

3.2.5 Example 

In this section, an example of the modeling and 

quantitative analysis for the charging pumps 

subsystem of a chemical and volume control system 

(CVCS) is introduced. The CVCS is a major support 

system for reactor coolant systems. The main 

function of the CVCS system is to inject water into 

the primary circuit in the case of a loss of coolant 

accident (LOCA) to prevent core meltdown. Figure 

18 shows a diagram of the charging pumps subsystem 

where the interfaces with other subsystems are 

represented by polygonal boxes. In the schematics in 

Fig. 18, RCV is the reactor control volume and SS is 

the acronym for any subsystem in the CVCS 

partitioning. 

 

 
Fig. 18 P&ID of the charging pump subsystem. 

 
Fig. 19 Model of the RGGG for the repairable charging pump 

subsystem. 
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Fig. 20 Model of the RFT for the repairable charging pump subsystem. 

 

This research focuses only on the operational 

probability (i.e. availability) of the output signal to 

subsystem 7, represented as SS7. Using the RGGG 

method, the charging pumps subsystem model is 

structured as shown in Fig. 19. The RGGG has a 

structure very similar to that of the charging pumps 

subsystem shown in Fig. 18. The availability of the 

system can be estimated using the probability tables 

proposed previously in this paper. The availability of 

the charging pumps subsystem was determined to be 

0.995610 using MSBNx
TM

, which is a software tool 

for Bayesian Belief Networks. 

 

Figure 20 shows the modeling of the charging pumps 

subsystem using RFT. It can be seen that the RFT 

model is more complex than the RGGG model. To 

estimate the system’s availability, the Markov chain 

analysis method is used. Figure 21 shows some 

Markov chain diagrams required for evaluating the 

availability of the charging pumps subsystem. The 

availability of the charging pumps subsystem is 

calculated to be 0.995610 using RELEX Studio, a 

software tool for fault tree and Markov chain analyses. 

It is confirmed that the availability estimation results 

from both methods are identical, while the repairable 

RGGG method provides a much easier method for 

modeling and understanding the actual structure of the 

system compared with the fault tree analysis. 

 

 

 

 
Fig. 21 Markov chain diagrams to evaluate the repairable charging pump subsystem. 
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4 Summary and conclusions 
There are many methods of reliability analysis, such 

as fault trees, reliability graphs, reliability block 

diagrams, Markov chains, and Monte Carlo 

simulations. Among the existing methods, the fault 

tree analysis is the most widely used method due to its 

expression power, applicability to complex systems, 

and various tool supports. However, because analysts 

must draw a fault tree based on the logical 

relationships among the components in a system, the 

use of the fault tree analysis is becoming more and 

more cumbersome as systems become more complex. 

To overcome the limitations of fault tree method, the 

reliability graph with general gates (RGGG) method is 

proposed by introducing general gates to a 

conventional reliability graph method. The reliability 

graph is particularly attractive due to its intuitiveness, 

but its most serious shortcoming is its limitation in the 

expression power. However, by introducing general 

gates to the reliability graph, the expression power is 

improved so that the RGGG can create a one-to-one 

match from the actual structure of a system to the 

reliability graphs of the system. Also, a quantitative 

evaluation method is proposed by transforming the 

RGGG to an equivalent Bayesian network without 

losing the intuitiveness of the model. The 

practicability of the RGGG method has been 

confirmed through applications to a simple system 

and an existing complex system. It has been shown 

that the RGGG method provides a much easier way to 

model the systems compared with the fault tree 

method and the results from both methods are 

equivalent. Furthermore, for complex systems, the 

RGGG provides more accurate results compared with 

the fault tree because the results of the RGGG do not 

possess truncation errors, which are generally 

included in large fault tree analysis. 

 

As with the conventional fault tree method, the 

RGGG method has been developed for the reliability 

analysis of non-repairable static systems. In order to 

utilize the RGGG to estimate the reliability of 

dynamic systems and the availability of repairable 

systems without losing the advantages of the 

conventional RGGG, dynamic RGGG and repairable 

RGGG have been developed. 

 

It was found that the accuracy of the dynamic RGGG 

method is limited due to the assumption of a discrete 

time, but it is ensured that the results are accurate as 

the number of time discretizations increases. For a 

simple dynamic system, the dynamic fault tree and the 

Markov chain methods can be used to analyze the 

system reliability without difficulty, but as the system 

becomes more complex, the dynamic RGGG method 

is more useful than those methods. From the 

viewpoint of a quantitative analysis, the complexity of 

the Markov chain increases exponentially as the 

number of the system components increases, whereas 

the complexity of the RGGG increases linearly with 

the increasing system components. For that reason, 

the RGGG does not undergo a state space explosion 

problem. Moreover, the structure of the RGGG is 

almost identical to the block diagram of the actual 

system. 

 

By applying the RGGG method to various repairable 

systems, the RGGG method that has been extended 

for repairable systems was found to have the same 

characteristic intuitiveness as the original RGGG 

method. In addition, the repairable RGGG method and 

the repairable fault tree method are compared by 

applying these methods to identical existing systems. 

The availability analysis result from the repairable 

RGGG method is identical to the result from the fault 

tree analysis. 

 

In conclusion, the RGGG method is believed to 

handle target systems more easily and intuitively 

compared with other methods, even when the system 

is dynamic or repairable, while its analysis result is 

the same as those of other methods. 
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