
 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014 273

Design of a platform for reliability analysis of safety-critical

digital I&C software

YANG Ming, ZOU Bowen, and YOSHIKAWA Hidekazu

College of Nuclear Science and Technology, Harbin Engineering University No. 145 Nantong Street, Harbin 150001, China

(yangming@hrbeu.edu.cn; zoubowen@hrbeu.edu.cn; yosikawa@kib.bigloge.ne.jp)

Abstract: This paper introduces a platform for reliability analysis of safety-critical digital I&C software. A

hierarchical structure model (HSM) method is proposed for modeling the structure of software at different layers of

abstraction during software development life cycle. A software reliability estimation method based on Flow Network

Model (FNM) and Bayesian Belief Network (BBN) is presented. By integrating the functions of HSM construction,

source code structure and logical path identification, sensitive analysis and reliability estimation into the platform, it

is expected to provide a comprehensive assist in the design, development, test and V&V activities of safety-critical

digital I&C software.

Keywords: software reliability; safety-critical software; digital I&C system

1 Introduction
1

Instrumentation and Control (I&C) system is the

central system of a nuclear power plant and is crucial

to the safe operation. With the wider applications of

digital I&C systems in the nuclear power plants, the

quality of a digital I&C system software, especially

those executing safety functions, is getting more

attention.

Hardware products, especially electronic products,

are consisted of basic elements. The same type of

basic elements has similar functions and failure

modes. It is possible to explore the defects of a

hardware product through various experiments. A

hardware failure occurs randomly after repair of

defects. Unlike hardware products, software is

consisted of codes. The functions and failure modes

of software codes are quite different. The design and

development defects will remain in the software, be

triggered under a certain condition, and will cause the

software behaviors inevitably rather than randomly

deviate from the expected specifications. Due to the

complexity of software as an intelligent product, test

and the reliability analysis methods of hardware, such

as Failure Mode and Effect Analysis (FMEA) and

Fault Tree Analysis (FTA), cannot be applied to fully

identify the software defects to prevent the

occurrence of software failures.

Received date: February 11, 2015

(Revised date: March 9, 2015)

Software reliability analysis is applicable to any

phase of software engineering. The results of

reliability analysis can be used for (1) evaluating

whether the reliability requirements are satisfied; (2)

providing valuable feedback to designers for

improving software quality; and (3) assisting in test

scenario planning. Software reliability analysis has

two major areas, that is, quantitative evaluation to

estimating the software reliability using the failure

data obtained from software tests and operations, and

qualitative analysis for identifying the key factors

which may influence the reliability of software. Both

the quantitative and qualitative analysis have to

construct reliability models.

In general, software reliability models can be

classified into white-box models and black-box

models. The major difference is the white-box

models like Flow Network Model (FNM)
[1]

 reflect

the structure of software, while the black-box models

like Software Reliability Growth Model (SRGM) and

Bayesian Belief Network
[2-3]

 will not take the

software structure into account. In this paper, we only

focus on white-box model technology.

The software development life cycle (SDLC) is

consisted of different phases including problem

definition, feasibility analysis, general description,

system design, coding, debugging and test,

acceptance, operation, updating and out-of-service.

mailto:yangming@hrbeu.edu.cn;%20zoubowen@hrbeu.edu.cn

YANG Ming, ZOU Bowen, and YOSHIKAWA Hidekazu

274 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014

The requirements for reliability analysis and

available documents and data in each phase of SDLC

are quite different. Software development is an

abstract-concrete, part-whole, gradual process. In

order to well satisfy the needs of reliability analysis

in different phases of SDLC, this paper presents a

Hierarchical Structure Modeling (HSM) method. The

basic idea of HSM is to model the structure of

software at different layers of abstraction and enable

an easy and step-by-step model extension.

2 Concepts of hierarchical structure

modeling

A HSM model describes the structure and data flow

of a software system using abstract-concrete and

part-whole conceptions. As shown in Fig.1, a HSM

model of software consists of 4 common elements,

that is, unit, module, relation and structure.
Unit Relation

Start EndCode Flow Equivalence

Module

Fig. 1 Graphical expressions of HSM elements.

1. Unit: is the most basic element of HSM and has

the following three types.

Start: is the start point of a HSM module. A Start unit

may just have a semantics meaning that each

software module will be executed from somewhere,

but it may also indicate data inputs from other

module(s).

Code: is an abstraction of a statement, expression,

command and function.

End: is the end of a software module.

2. Module: is a group of interrelated Unit for

realizing a certain function. The conceptions of Unit

and Module in HSM have relative meanings. On one

hand, a Unit at one level of abstraction may be

extended to a Module at a lower level of abstraction,

and one the other hand a Module can be treated to be

a Unit at a higher level of abstraction.

3. Relation: describes the execution order or

equivalence relationship between HSM Units and

Modules.

Flow Relation: connects two Units for describing that

the execution order is from one to another along the

arrow direction.

Equivalence Relation: connects a Unit to a Module

for indicating that the Unit is an equivalent code of

the Module.

4. Structure: describes the reliability logical relation

between HSM Units.

5. Serial Structure: Taking a group of Units as a

system, if any failure of Unit will result in the system

failure, or in other words, the system will be

successful if all Units work successfully; these Units

are organized as a serial structure.

6. Parallel Structure: Taking a group of Units as a

system, if at least one Unit successfully works then

the system will be successful, or in other words, the

system will fail if all Units lose their functions; these

Units are organized as a serial structure. In C

Programming Language, a Parallel Structure is

realized by “if-else” and “Switch” commands.

7. Compound Structure: is a mixing structure of

Serial and Parallel Structure.

An example of HSM model is shown in Fig.2. By

utilizing HSM technology, it is possible for modeling

the software structure in any phase of SDLC even in

the early stages of system design and less of detailed

system design situations.

Design of a platform for reliability analysis of safety-critical digital I&C software

 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014 275

Start-1

Code 1 Code 2 Code 3

End-1

Code 3-1 Code 3-2

Start-2 End-2

Start-3

Code 1-1 Code 1-2

End-3

Module 1

Module 2

Module 3

Code 3-1-1

Code 3-1-2
Start-4 End-4

Module 4

Code 4

Fig. 2 An example of HSM model of software.

3 Software reliability estimation

based on HSM

3.1 Reliability estimation for a single code

In this paper, the FNM method proposed by the

literature
[1]

 is applied to estimate the reliability of

software.

Let
iCT and ih be the average execution time and

the total number of executions of a single line of code

iC .Let iT be the total execution time of iC . Let

ip denote the probability of iC

being executed

once and the test result meets the expectations. Let

iq

denote the probability of iC being executed once

and the test result fails to meet the expectations.

Clearly, the one-time test scenario follows a

Bernoulli distribution. Set the prior failure probability

of iC to

im

iq


10

(1)

where im is the failure metrics of iC which is a

positive real number and can be estimated according

to the past performance and complexity of iC , or

developer experience. The more complexity, longer

execution time and lower technology maturity of iC ,

the higher failure probability of iC , i.e., the smaller

im . For example, code iC and jC were

developed by the same technical personnel and have

a similar complexity. If iC has been tested while

jC has not been tested yet, the failure probability of

jC should be higher than that of iC . Then the

failure probability of jC can be set to

210



im

jq

(2)

If iC is executed exactly once and the test result

meets the expectations, the following relationship

holds:

1  i i ir p q

(3)

where ir is the reliability of iC .

If iC is executed more than once in a software test

and all test results meet the expectations, considering

the failure probability of iC should be lower than

its prior failure probability, then the failure

probability and reliability of iC can be updated as

10


 i ih m

iq

(4)

1 1 10


    i ih m

i ir q

(5)

If iC is executed exactly ih times and only the

ih th test fails to meet the expectation, according to

the requirements for the safety-critical software, the

YANG Ming, ZOU Bowen, and YOSHIKAWA Hidekazu

276 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014

errors in iC must be corrected. After correction, the

failure probability of iC should be within the

interval (iii mhm 
10,10). The failure probability of

iC can be therefore set to

3

410



i

i

h
m

iq

(6)

The failure probability of the corrected iC can be

also set using formula (1) if it is treated

conservatively as a new code.

3.2 Reliability estimation for a serial configuration

For a serial structure
iCS composed of

iC (ni ,...,2,1), it can be equivalent to a Code CS .

If the serial structure
iCS is executed exactly

ih times and all test results meet the expectations,

then the reliability of
iCS is

1

C

n

S i

i

r r

(7)

Because all Codes in
iCS are all executed ih times,

the execution time of the equivalent Code CS is:


CS ih h

(8)

The total execution time of the equivalent Code

CS is:

1

 i

n

S C i

i

T T h

(9)

The average execution time of the equivalent Code

CS is:

1

C i

n

S C

i

T T

(10)

3.3 Reliability estimation for a parallel structure

For a parallel structure
iCP composed of

iC (ni ,...,2,1), it can be equivalent to a Code CP .

The total number of executions of the parallel

configuration
iCP is:

1


n

p i

i

h h

(11)

The total number of executions of the equivalent

Code CP is:

1

C

n

P i

i

h h

(12)

The total execution time of the equivalent Code

CP is:

1

 i

n

P C i

i

T T h

(13)

If consider the number of executions reflect the

importance of a Code in
iCP , then the average

execution time of the equivalent Code CP is:

1

1



  C i

n

P C i

iP

T T h
h

(14)

In this case, the reliability of the parallel structure

iCP is:

1

 


 i

C

C

n
C i

p i

i P

T h
r r

T
(15)

From formula (15) it can be concluded that the more

number of executions and more execution time of a

Code, the more contribution to the reliability of the

parallel structure.

Otherwise, if consider all Codes in a parallel structure

have the same importance, then the average

execution time of CP is:

1

1



  C i

n

P C

i

T T
n

(16)

In this case, the reliability of the parallel CP

structure is:

1

 


 i

C

C

n
C

p i

i P

T
r r

T
(17)

Design of a platform for reliability analysis of safety-critical digital I&C software

 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014 277

HSM Builder

Data Processor

HRMs
Structur

e

Tester

Test
Data

Designer

Software
Structur

e
HSMs Module Reliability

Model Mapper

BBN Models

BBN Tool

HRMs

Path Identifier

Paths

Code Recognizer

Software
Modules

Source
Codes

Code Structure

Code

Parameters

HSM Analyzer

Designer

Key
Paths

Software
Reliability
Sensitiv

e
Code

Fig. 3 Structure of software reliability analysis platform.

Fig. 4 Graphical interface of HSM builder.

3.4 Reliability estimation for a compound

structure

As shown in Fig. 2, by repeating the equivalent

process of serial and parallel structure, a compound

structure will be finally equivalent to a serial

structure and formula (7) will be applicable to

estimate the reliability of a compound structure and

even the reliability of the whole software.

4 Design of software reliability

analysis platform

A platform for software reliability analysis has been

designed and developed for helping technical

personnel to construct hierarchical structure of

software, identify the code and key paths, and

evaluate the software reliability. The structure of the

platform is shown in Fig. 3. All functional modules

except the HSM Builder are developed with C#

language in Windows XP.

4.1 HSM builder

As shown in Fig.4, HSM Builder is a graphical

modeling tool for constructing HSM models. HSM

Builder was developed with Microsoft Office Visio

2000 in Windows XP. The symbols of HSM elements

are saved as a template enabling Drag-and-Drop

operations for fast constructing HSM models. The

parameters for reliability assessment including failure

metrics, number of executions, execution time and

execution result are defined in the property of each

element. The HSM models can be exported to HSMs

Database in XML format.

YANG Ming, ZOU Bowen, and YOSHIKAWA Hidekazu

278 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014

4.2 Code recognizer

The function of Code Recognizer is to automatically

identify the structure including the serial and parallel

structures of the source code of a Module in a HSM

models by matching the key words such as “if”,

“else-if”, “else”, “Switch” and “Case”. The code

identification results are saved in the Code Structure

Database and can be presented to users graphically in

a tree or a figure.

Fig, 5 Code identification and graphical display.

4.3 Data processor

Data Processor provides a graphical interface for

inputting test results into the platform. The test

personnel first select a Code unit from the Code

Structure Database, and then inputs failure metrics,

the number of executions and execution time of the

Code. Data Processor will accordingly estimate the

reliability of the Code using the reliability estimation

method for a single code. The estimation results will

be used to update the relevant data in the Code

Structure Database.

4.4 Path identifier

Path Identifier can identify all possible code

execution paths according source code structure.

4.5 BBN mapper

The function of BBN Mapper is to map the code

structures into a Bayesian Belief Network (BBN)

model for qualitative and quantitative reliability

analysis of a HSM Module. The procedures are as

follows:

Step 1: map each Code Unit in the HSM Module

into a leaf node of BBN model.

Step 2: find a pure parallel structure
iCP .

Step 3: map
iCP into a sub-model of BBN.

Step 4: repeat step 2-3 until all pure parallel

structures are processed.

Step 5: find a pure serial structure
iCS .

Step 6: map
iCS into a sub-model of BBN.

Step 7: repeat step 5-6 until all pure serial

structures are processed.

Step 8: repeat step 2-7 until the Module is

equivalent to a Unit.

Taking the HSM Module shown in Fig. 6 as an

example, C3/C4 and C7/C8 are pure parallel

structures.

Design of a platform for reliability analysis of safety-critical digital I&C software

 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014 279

start
C1

C2

C5

C3

C4
C6

C7

C8

C9
end

Fig. 6 A HSM module with a compound configuration.

The general sub-model BBN for a pure parallel or

serial structures is shown in Fig.7, where iC

denotes the i th Code of
iCP . The parallel logic of

iCP can be expressed using a conditional probability

table. Table 1 gives an example of a conditional

probability table of the parallel structure C3/C4.

C2

PCi

C1 Cn

Fig. 7 A general sub-model of BBN for a pure serial or

parallel structure.

Table 1 Conditional probability setting for a pure parallel

structure

C3 Success Failure

C4 Success Failure Success Failure

P3-4=

Success
1

P

CC

T

Th
33

P

CC

T

Th
44 0

P3-4=

Failure
0

1-

P

CC

T

Th
33

1-

P

CC

T

Th
44

1

Note: P3-4 is the equivalent code of the pure parallel structure

43CCP

The estimation result of a pure parallel structure by

BBN is the same as Formula (15) presents. The proof

is given as follows, where CP denotes the equivalent

Code of
iCP .

43434343

43344343

443344334433

4433)1)(1(0)1()1(

C

P

C

P

CC

P

C

P

C

P

CC

CC

P

CC

P

CCCCP

r
T

Th
r

T

Th
rr

T

ThTh
r

T

Th
r

T

Th
rr

rr
T

Th
rr

T

Th
rrrrr

C








The general sub-model of BBN can be also applied

for mapping a pure serial structure into a sub-model

of BBN. However, the conditional probability has to

be set according to Table 2.

Table 2 Conditional probability setting for a pure serial

structure

C2 Success Failure

P3-4 Success Failure Success Failure

S2-3-4=

Success
1 0 0 0

S2-3-4=

Failure
0 1 1 1

Note: S2-3-4 is the equivalent code of the pure serial structure

432 CCCS

By performing the mapping procedures, the final

BBN model for Fig.6 is shown in Fig. 8.

4.6 BBN Tool

BBN Tool is to analyze a BBN based software

structure model for the following purposes.

(1) Software reliability estimation: given the

reliability of each leaf node (HSM Code) is known,

the software reliability can be estimated

automatically without manually processing each

HSM module into a pure serial structure.

(2) Sensitivity analysis of code: BBN Tool can show

the changes of software reliability with the reliability

of a code or a module in the form of a figure. The

technical personnel can therefore know which code

(18)

YANG Ming, ZOU Bowen, and YOSHIKAWA Hidekazu

280 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014

C3

C4

P3-4 S2-3-4

C2

P2-3-4-

5

S1-2-3-

4-5-6-7-

8

S1-2-3-

4-5-6
PC

C5

S1-2-3-

4-5

C1

C7

P7-8C8

C6 C9

Fig. 8 An example of mapping a HSM module into a BBN model.

or module should be paid more attention to check and

test.

(3) Key test path identification: provide a “what-if”

analysis that given the results of the next software

test meet with expectations, how much the

contribution of each path to the growth of software

reliability should be. The technical personnel can

therefore consider and prepare a better scenario for

the next software test.

4.7 HSM analyzer

After the estimation of the reliability of all HSM

codes and modules have been done, the HSM

Analyzer can estimate the reliability of the whole

software by utilizing the hierarchical structure of

HSM.

5 Case study

A PID controller code, a segment of digital feed

water control system software, was selected for case

study to verify the functions of the Software

Reliability Analysis Platform. The PID Controller

code consists of 186 lines programmed by

FORTRAN language. The HSM model of the PID

controller code is shown in Fig. 9.

Start
C1

C2

C3

C4
End

PID Controller

 Fig. 9 HSM model of a PID controller software code.

(1) Code and path identifications

The code identification result is shown in Fig.10

where the parts corresponding to the modules of the

HSM model in Fig.9 are marked. There are totally

115,212 execution paths in this PID controller code.

Fig.10 Code structure of PID controller.

(2) Reliability estimation
First, the failure metrics (im) of the Unit in Fig. 9

and all lines in Fig.10 is assumed to be 1, i.e., the

prior reliability of each Unit in Fig.9 and each line in

Fig.10 is 0.9. Then we executed the PID Controller

Design of a platform for reliability analysis of safety-critical digital I&C software

 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014 281

code 5 times using different test scenarios.

Meanwhile in the parallel structure C2/C3, only C2

module was covered and all test results met the

expectations. Using the Software Reliability Analysis

Platform, the software reliability of PID controller is

0.9989976.

(3) Test scenarios evaluation

Given the 6
th
 test will also meet the expectations, the

contribution of all execution paths to the growth of

the software reliability of PID controller were

evaluated. Table 3 presents the top 20 execution paths

which may contribute to a higher relative magnitude

of software reliability of PID controller. In Table 3,

the No. 1-5 execution paths will cover C2 Module,

while others will cover C3 Module. From Table 3, it

can be concluded that successfully testing the same

code and module will definitely contribute to the

growth of software reliability, however the estimated

reliability may not so creditable. Note that the

No.6-20 execution paths will lead to negative

reliability growths.

The reason is that we assumed that the prior

reliability of C3 module is 0.9, even after a successful

execution of one path covering C3 the reliability of

the codes in C3 module will reach to 0.99, but due to

C3 consists of too many serial codes, the reliability of

C3 will be lower than what we pre-estimated.

(4) Evaluation of failure metrics (im)

To evaluate the influence of setting different

value of failure metrics (im) to each code, we

estimated the software reliability of PID controller by

changing the failure metrics values from 0.5, 1, 1.5, 2

to 3, respectively. The test scenarios for evaluations

are same and all test results met expectations. Figure

11 presents the comparison of different failure

metrics values contributing to reliability changes of

PID controller with the number of tests. It can be

seen that a lower failure metrics value will result in

lower software reliability estimation at the beginning

stage of software test. However, with the number of

tests increasing, there is no significant difference

between the estimated software reliability using

different failure metric values, which reveals that

after each single line of code reaching a certain

reliability level, the structure of software becomes the

determining factor of software reliability estimation.

Table 3 Top 20 execution paths of PID controller for the 6th software test

No. Execution Paths
Software Reliability

of PID Controller
Relative Magnitude

1 2 0.999999970499998 0.001002330497241

2 3 0.999956399815828 0.000958759813071

3 4 0.999729584980548 0.000731944977791

4 10264 0.999729584980548 0.000731944977791

5 19864 0.999459272569428 0.000461632566671

6 67868 0.997956455516570 -0.001041184486187

7 106272 0.997956455516570 -0.001041184486187

8 29448 0.997999939057999 -0.000997700944758

9 29462 0.997999939057999 -0.000997700944758

10 29463 0.997999939057999 -0.000997700944758

11 29464 0.997999939057999 -0.000997700944758

12 29468 0.997999939057999 -0.000997700944758

13 29472 0.997999939057999 -0.000997700944758

14 29496 0.997999939057999 -0.000997700944758

15 29592 0.997999939057999 -0.000997700944758

YANG Ming, ZOU Bowen, and YOSHIKAWA Hidekazu

282 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014

16 29624 0.997999939057999 -0.000997700944758

17 29784 0.997999939057999 -0.000997700944758

18 30104 0.997999939057999 -0.000997700944758

19 30232 0.997999939057999 -0.000997700944758

20 34264 0.997999939057999 -0.000997700944758

Fig. 11 Influence of failure metrics to software reliability estimation.

6 Conclusions

In this paper, a Hierarchical Structure Modeling

(HSM) of software is presented, which can be applied

for software reliability analysis even in the early

stage of software development life cycle. With the

process of the software design and development, the

HSM model can be easily refined and extended.

Based on HSM technology, the Flow Network Model

(FNM) approach is applied to estimate the reliability

of a single line of code, serial and parallel structures.

This paper also presents a solution for automatically

estimating a compound structure by mapping HSM

into a Bayesian Belief Network (BBN) model. A

platform for software reliability analysis developed

by authors is introduced, which integrates the

functions of code and execution paths identification,

sensitivity analysis and software reliability estimation.

The platform will be helpful to the technical

personnel in the software design, development, test

and acceptance tasks. With the help of the proposed

software reliability analysis platform, the software

designers and developers can clearly understand

about the requirements of software reliability design

and test.

References
[1] YANG Y.G., and SYDNOR R.: “Reliability Estimation

for A Digital Instrument and Control System”, Nuclear

Engineering and Technology, 44(4), pp.405-414(2012)

[2] KIM M.C.: “Reliability Analysis of Digital I&C

Systems in KAERI”. International Journal of Nuclear

Safety and Simulation, 3(4), pp. 276-280(2012)

[3] HOLMBERG J.E.: “Software Reliability Analysis in

Probabilistic Risk Analysis”, International Journal of

Nuclear Safety and Simulation, 3(4), pp.

281-291(2012)

[4] YANG M., and SONG M.C.: “Study on Quantitative

Software Reliability for Digital Control System”,

Nuclear Power Engineering, 35, pp. 54-58(2014)

