

310 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014

Analysis and modelling of software in probabilistic safety

assessment

HOLMBERG Jan-Erik
1
, BÄCKSTRÖM Ola

2
, and TYRVÄINEN Tero

3

1. Risk Pilot AB, Rummunlyöjänkatu 11 G 45, FI-02600, Espoo, Finland (jan-erik.holmberg@riskpilot.fi)

2. Lloyd Register Consulting, Box 1288, SE-17225 Sundbyberg, Sweden (Ola.Backstrom@lr.org)

3. VTT: P.O.Box 1000, FI-02044 VTT, Finland (Tero.Tyrvainen@vtt.fi)

Abstract: Currently, no consensus approach is available for assessing safety and reliability of digital I&C at

nuclear power plants. Due to the absence of a common method for modelling software failures in the

probabilistic safety assessment (PSA), generic conservative common cause failure probabilities are usually

used, which tend to be conservative and may ultimately prevent PSA results from providing proper risk insights.

This paper presents a method for the quantification of software failures in a reactor protection system. The

emphasis of the method is in the definition of the relevant software fault cases and related failure effects.

Software fault cases are associated with different software modules, such as system software and application

software modules. The approach for the reliability quantification is dependent on the type of module. The

failure effects are divided into fatal failure and non-fatal failure of the processor. In the latter case, a specific

I&C function is affected and the effect can be failure to actuate on demand or spurious actuation. To estimate

the failure probability of a system software module operating experience may be used given that normal

operation conditions correspond with transient conditions. For application software modules, indirect evidence

needs to be used. The quantification is based on two main metrics: complexity of the application software and

the degree of verification and validation of the software. The fractions between fatal vs. non-fatal failure as well

as between failure to actuate and spurious actuation is based on expert judgement. The outlined quantification

method offers a practical and justifiable approach to account for software failures that are usually ignored in

current PSAs. Validation of the method will be a future activity.

Keyword: software reliability; probabilistic safety assessment; reactor protection system; nuclear safety

1 Introduction
1

Digital instrumentation and control (I&C) is

becoming more and more common in nuclear power

plants (NPPs). Turbine plant I&C and diverse other

safety-related systems, which have minor role in

probabilistic safety assessment (PSA) context, are

already digital. Although quite a number of plants

have received digital reactor protection systems

(RPS) either as original equipment (e.g. China,

France, Japan, United Kingdom) or in upgrade

projects (e.g. Sweden, Switzerland, USA), most

plants do not yet have digital reactor protection

system. New-builds will have complete digital I&C.

Currently, no consensus approach is available in the

NPP field for assessing safety and reliability of

digital I&C and meeting related regulatory

requirements. However, there is a tradition to try to

find harmonised approaches for probabilistic safety

assessment (PSA) and its applications. For areas of

Received date: January 5, 2015

(Revised date: February 12, 2015)

greater uncertainty, e.g., analysis of digital I&C, the

driver to find common approaches and guidelines is

strong. Due to the absence of a common method for

modelling software failures in the PSA, generic

conservative software common cause failure (CCF)

probabilities are usually used which tend to be

conservative and may ultimately prevent PSA results

from providing proper risk insights.

This paper presents a method for quantification of

RPS software failures in a nuclear PSA context. The

aim is to define a simple yet sufficient model which

describes the software failure impacts and provides a

quantification approach for the failures. The method

has been developed in the Nordic DIGREL project,
[1,

2]
 and builds partly on the work on taxonomy of

failure modes of digital components for the purposes

of PSA conducted by the international OECD/NEA

Working Group RISK.
[3]

Analysis and modelling of software in probabilistic safety assessment

 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014 311

2 State-of-the-practice of modelling

software in PSA

2.1 Background

This chapter gives an overview of the

state-of-the-practice in software reliability analysis in

PSA. Software failures are in general mainly caused

by systematic (i.e. design specification or

modification) faults, and not by random errors.

Software based systems cannot easily be decomposed

into components, and the interdependence of the

components cannot easily be identified and modelled.

Applying software reliability models in the PSA

context is hence not a trivial matter.

Software reliability models usually rely on

assumptions and statistical data collected from

non-nuclear domain and therefore may not be directly

applicable for software products implemented in

nuclear power plants. More important than the exact

values of failure probabilities are the proper

descriptions of the impact that the software-based

systems has on the dependence between the safety

functions and the structure of accident sequences.

In spite of the unsolved issue of addressing software

failures, there seems to be a consensus regarding some

philosophical aspects of software failures and their use

in developing a probabilistic model. The basic

question: “What is the probability that a safety system

or a function fails when demanded” is a fully feasible

and well-formed question for all components or

systems independently of the technology on which the

systems are based
[4]

. A similar conclusion was made

in the Workshop on Philosophical Basis for

Incorporating Software Failures in a Probabilistic Risk

Assessment
[5]

. As part of the open discussion, the

panellists unanimously agreed that:

 software fails

 the occurrence of software failures can be treated

probabilistically

 it is meaningful to use software failure rates and

probabilities

 software failure rates and probabilities can be

included in reliability models of digital systems.

For the quantification of software failure rates and

probabilities there are several general approaches, e.g.,

reliability growth methods, Bayesian belief network

(BBN) methods, test based methods, rule based

methods
[4]

 and software metrics based methods
[6,7]

.

These methods are reviewed in Ref. [8].

2.2 Software reliability estimation in PSA

In the context of PSA for NPPs, there is an on-going

discussion on how to treat software reliability in the

quantification of reliability of systems important to

safety. It is mostly agreed that software could and

should be treated probabilistically
[4,5]

 but the question

is to agree on a feasible approach.

Software reliability estimation methods described in

academic literature, shortly discussed in the previous

chapter, are not applied in real industrial PSAs for

NPPs. Software failures are either omitted in PSA or

modelled in a very simple way as common cause

failure (CCF) related to the application software (AS)

of operating system (platform). It is difficult to find

any basis for the numbers used except the reference to

a standard statement that 1E-4 per demand is a limit to

reliability claims, which limit is then categorically

used as a screening value for software CCF.

The engineering judgement approaches used in PSA

can be divided into the following categories

depending on the argumentation and evidence they

use
[9]

:

 screening out approach

 screening value approach

 expert judgement approach

 operating experience approach.

The reliability model used for software failures is

practically always the simple “probability of failure

per demand” (pfd).

2.2.1 Screening out approach

Screening out approach means that software failures

are screened out from the model. The main arguments

to omit software are that 1) the contribution of

software failures is insignificant or that 2) no practical

method to assess the probability of software failure

(systematic failure) exists.

HOLMBERG Jan-Erik, BÄCKSTRÖM Ola, and TYRVÄINEN Tero

312 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014

Screening value approach means that some reliability

number, like pfd = 1E-4, is chosen without detailed

assessment of the reliability, and it is claimed that this

is a conservative number for a software CCF. The

screening value is taken from a reference like IEC

61226.
[10]

 Accordingly, the “Common Position”

document states that reliability claims “pfd < 1E-4”

for a single software based system important to safety

shall be treated with extreme caution.
[11]

 The basis for

such a assumption is due to the fact that demonstrating

lower probabilities, e.g., by statistical testing is very

laborious.

2.2.3 Expert judgement approach

Expert judgement approach relies on the assessment

of the features of the software system which are

assumed to have correlation with the reliability. The

two questions are 1) which features should be

considered and 2) what is the correlation between the

features and the reliability. This kind of approach is

used extensively in PSA, e.g., in human reliability

analysis. But such models are difficult to validate.

In a case study on quantitative reliability estimation of

a software-based motor protection relay, Bayesian

networks were used to combine evidence from expert

judgment and operational experience
[12]

.

In one protection system reliability analysis study, it

was assumed that the contribution from software

failure to total failure probability is 10% of the

hardware failure probabilities.
[13]

 The rationale to this

was that there are two well recognized aspects of

software reliability: 1) the contribution of software

failures to total failure of a digital system is smaller

compared to exclusive failure of hardware, 2) there is

a threat of software related common cause failures for

a group of identical and redundant components. The

second aspect was addressed by selecting a suitable

value for β in the beta-factor CCF model. Value β =

0.03 was given, including CCFs due to hardware and

software.

SIL-value (safety integrity level of IEC 61508)
[14]

approach is also an example of an expert judgement

approach, where the reliability target implied by the

SIL is interpreted as the unavailability of the item. To

apply SIL-values is a controversial issue, and at least

the following weaknesses may be mentioned
[15]

: it

does not differentiate between functions implemented

by the system and the failure modes of the system; it is

silent regarding the contribution of systematic

failures; it does not give any indication for the

estimation of beta-factors or other parameters that can

be used to characterize CCFs; the notion of “system”

is not defined.

2.2.4 Operating experience approach

Operating experience approach means an assessment

based on operational data. In reality, operating

experience approach is like the expert judgement

approach since operational data need to be interpreted

in some way to be used for the reliability estimation.

In a Swedish PSA, the contribution of software CCF

to the unavailability of a safety system was assessed

based on operational experience
[16]

. The operational

experience of over 60 similar systems showed no CCF

caused by platform properties and thus the

contribution of platform CCF was estimated at 1E-8.

Two events could be considered as a CCF, which leads

to an unavailability of safety I&C systems as 1E-6.

This value was applied for redundant I&C units.

In one study
[17]

, reasonable estimates for the relative

contribution of software to digital system reliability

software CCF probabilities were developed based on

operational experience and engineering judgment. The

CCF of operating system software was estimated as

1E-7 based on data gathered from dozens of plants

during a time period of more than 10 years. For the

application software, the CCF probability was

estimated as 1E-5 for each function group. The SIL-4

targets were used as a general guide in the estimate.

Additionally, it is suggested that if multiple

application software CCFs appeared in same cut set

the dependency between the two CCFs should be

assessed. One way to take this into consideration is to

assume a beta factor between the two software CCF

events. Values 0.001 < β < 0.1 were recommended,

depending on the similarity of the software.

2.3 Conclusions on software reliability in PSA

Generally, only common cause failures are modelled

in PSA. One reason for this is that there has not been a

methodology available to correctly describe and

Analysis and modelling of software in probabilistic safety assessment

 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014 313

incorporate software failures into a fault tree model.

The only reliability model which is applied is constant

unavailability and this is used to represent the

probability of CCF per demand. Spurious actuations

due to software failures are not modelled or no need to

consider software failure caused spurious actuations

has been concluded.

Software CCF is usually understood as the application

software CCF or its meaning has not been specified.

Software CCF is generally modelled between

processors performing redundant functions, having

the same application software and on the same

platform. One of the exceptions is the design phase

PSA made for an automation renewal project, where

four different levels of software failures were

considered: 1) single failure, 2) CCF of a single

automation system, 3) CCF of programmed systems

with same platforms and or software, and 4) CCF of

programmed systems with different platforms and or

software
 [18]

.

It is difficult to trace back where the reliability

numbers used in PSA come from — even in the case of

using operating experience. The references indicate a

sort of engineering judgement but lacks supporting

argumentation.

3 Failure modes taxonomy

3.1 WGRISK/DIGREL task group work

In 2007, the OECD/NEA CSNI directed the Working

Group on Risk Assessment (WGRisk) to set up a task

group to coordinate an activity in this field. One of

the recommendations was to develop a taxonomy of

failure modes of digital components for the purposes

of probabilistic safety assessment (PSA), resulting in

a follow-up task group called DIGREL.
[19]

The WGRISK/DIGREL failure modes taxonomy
[3]

 is

based on a hierarchical definition of five levels of

abstraction for a nuclear power plant safety

automation: 1) system level, 2) division level, 3) I&C

unit level, 4) I&C unit module level, 5) basic

component level. This structure corresponds to a

typical reactor protection system architecture. See Fig.

1.

 System level taxonomy
 Division level taxonomy
 I&C unit level taxonomy

 Module level taxonomy
 Basic component level

taxonomy

Functional point of view
No distinction between
hardware and software aspects

Functional and structural point
of view
Possible distinction between
hardware and software aspects

Fig.1 Levels of abstraction and points of view in the failure

modes taxonomy. [3]

In DIGREL, the main approach is to define failure

modes functionally. At the system and division level,

there are basically two failure modes: “failure to

actuate the I&C function” and “spurious actuation”.

At lower levels (I&C unit, module, basic component),

it is relevant to consider more aspects of failure modes,

i.e.,

 The fault location (in which hardware or

software module or I&C unit the fault is located).

 Failure effect: 1) Fatal failure (generation of

outputs ceases, outputs are set to specified,

supposedly safe values), 2) Non-fatal failure

(generation of outputs continues with possibly

wrong output values).

 Detection situation: On-line detection, off-line

detection, revealed only by demand, spurious

actuation.

The combination of fault location, failure effect,

detection situation together with the fault tolerant

design of the system are usually sufficient to

determine the functional end effect, such as

 Loss of all functions (outputs) of the I&C unit,

 Loss of a specific I&C function (no actuation

when demanded),

 Spurious I&C function.

The above list is not exhaustive, and, e.g., for voting

logics or in case of intelligent validation of input

signals the functional end effect may be more complex

(e.g. degraded voting logic). Anyway, the module

level (both hardware and software) seems to be

sufficient to analyse dependencies important to PSA,

at least for protection systems.

HOLMBERG Jan-Erik, BÄCKSTRÖM Ola, and TYRVÄINEN Tero

314 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014

3.2 Example architecture

In order to define an approach to analysis and

modelling of digital I&C, an example design has

been considered in DIGREL. The architecture of the

safety I&C is presented in Fig. 2. The protection

system is divided into two subsystems, called RPS-A

and RPS-B. The two subsystems enable

diversification of safety functions the whole path

from sensors to actuators. The four divisions (1 to 4)

are identical.

RPS-BRPS-A

Division 1

...

VU

B1

...

Division 2 Division 3 Division 4

...

VU

A1

Actuator ...

APU

A1

APU

B1

MU Control room

Sensors

Fig.2 Architecture of the example reactor protection system.

APU = Acquisition and processing unit, VU = Voting unit, MU

= Processor unit for operator.[1]

The example reactor protection system is designed

with fault tolerant features, which provides means to

detect failures and mark faulty signals, e.g.

self-surveillance, dynamic self-test, open circuit

monitoring, cross channel comparison etc. Fault

processing is implemented in the design of the

hardware circuits and the software logic, and it can

be defined on a case-by-case basis how the logic shall

react if invalid input signals are present, and how

output signals shall be set in case of faulty logic

signals.

In general, the following applies for detected failures

of the example I&C protection system:

 Detected failure in input signals, in intra I&C

unit signal processing or in inter I&C unit signal

exchange will cause corresponding signals to be

replaced by a default value of 0 or 1.

 Complete, or fatal, failure of an I&C unit, e.g.

processor failure or power supply failure, will

cause all output channels of the I&C unit to 0 and

controlled actuators will go to the predefined

fail-safe state.

3.3 Software failure modes and effects

The approach to handle software failures is based on

the postulation of software faults in different software

modules and the consideration of a limited but

representative number of end effects for the software

module failures. The following software modules are

considered:

 System Software (SyS), which is generic to the

system (platform).

 Application software (AS) modules, which is

specific to the application function implemented

in APU or VU.

 Elementary function (EF) blocks (or library

functions) used in the design of application

software modules.

 Data communication software, which is the

operating system of the data communication

units.

 Data link configuration, which is specific to the

network (e.g. RPS-A or RPS-B).

 Proprietary software in hardware modules (other

than the processor module).

In principle a fault can be postulated in any of the

software modules listed above, and consider all the

theoretically possible failure effects in the I&C units.

It is, however, sufficient to distinguish between fatal

and non-fatal failures and to consider the relevant

CCF cases. This consideration leads to the cases

listed in Tables 1 and 2.

In system fault trees, software module faults can be

modelled parallel to hardware module failures, which

have the same failure effect.

Analysis and modelling of software in probabilistic safety assessment

 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014 315

Table 1 Screening of software modules failure cases

Case Description

1

Fatal failure causing loss of all subsystems that have

the same System Software (SyS), e.g., RPS-A and

RPS-B in the example architecture.

2a

Fatal failure causing loss of processing units in one

subsystem, e.g., RPS-A or RPS-B. The whole

subsystem stops running and outputs are set to 0.

2b

Fatal failure in communication modules of one

subsystem (RPS-A or RPS-B). The voting units

(VU) run and take default values. Fatal failure of

communication modules in both subsystems is

omitted due to diversity and separation of the

communication between subsystems.

3

Fatal failure causing failure of redundant set of I&C

units, i.e, a set of acquisition and processing units

(APU) or a set of voting units (VU) in one

subsystem.

4

Non-fatal failure associated with an application

software module. Failure effect can be a failure to

actuate the function or a spurious actuation. The

fault can be in the APUs or VUs.

Table 2 Software modules failure cases and failure effects

I&C

unit

Software fault case

1 2a 2b 3 4

R
P

S
-A

&
B

R
P

S
-A

R
P

S
-B

R
P

S
-A

R
P

S
-B

A
P

U
-A

V
U

-A

A
P

U
-B

V
U

-B

A
P

U
-A

V
U

-A

A
P

U
-B

V
U

-B

APU-A 0 0 d 0 f

VU-A 0 0 d 0 f

APU-B 0 0 d 0 f

VU-B 0 0 d 0 f

0 = fatal failure of the unit, outputs goto 0

d = communication lost, outputs goto default values

f = non-fatal failure of the unit, specific I&C functions are

affected (no actuation or spurious actuation)

4 Software reliability quantification

Suitable software reliability quantification method

depends on the type of software modules. In the

example, the modelling and quantification of

software was simplified into the four cases described

in Section 3.3.

System software failures cover the cases 1 and 2a.

Data communication unit software faults are covered

by case 2b.

Each application software module needs to be

considered specifically and the failure belongs to the

case 3 or 4.

Faults in elementary function blocks can be included

in the AS failures. This is based on the judgement

that faults in EF modules are unlikely. Faults in AS

are mainly caused by wrong use of EF modules.

Proprietary software faults can be included in the

hardware modules failures.

4.1 Use of operating experience for system

software and data communication software

failure rates

The failure cases 1, 2a and 2b (see Section 3.3)

should preferably be estimated for the system in

question from the operational history. The main

challenge is to find historical events that have caused

a complete fatal failure of the whole system.

According to the analysis of the I&C system vendor

AREVA GmbH, the following order of magnitude

could be estimated for the different cases (numbers

presented here are not exactly those which were

estimated from the vendor data, but they reflect the

order of magnitude that can be estimated from the

available data):
[2]

 Case 1: fatal failure of all subsystems with the

same system software, pfd ~ 1E-7. There is no

experience from such events. It can be assumed

to be a fraction of Cases 2a and 3, depending on

the degree of diversity between the subsystems

(RPS-A vs. RPS-B).

 Case 2a: fatal failure of one subsystem, pfd ~

1E-6. There is no experience from such events.

Failure rate is estimated using Bayesian approach

with Jeffreys non-informative prior distribution

yielding the posterior mean value 0.5/T for the

failure rate, where T is the observation time. The

value for pfd corresponds to 24 h mission time.

 Case 2b: fatal failure in data communication unit

software of one subsystem, pfd ~ 1E-5 (some

occurred events may be classified in this category,

though no complete CCF has been observed).

HOLMBERG Jan-Erik, BÄCKSTRÖM Ola, and TYRVÄINEN Tero

316 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014

4.2 Estimation of application software module

failure probabilities

4.2.1 General assumptions

There are several AS modules on each I&C unit

(APU and VU). A fault in one application software,

which causes a fatal failure of the processor affects

also the other application software modules running

on the same processor (case 3). Hence, a fatal failure

can affect the other processes – but only in the

configuration that the information output stops.

A non-fatal failure in one application software

module (case 4) can produce an incorrect output (no

actuation when demanded or spurious actuation). If

there is a strict separation between the system and

application software, a non-fatal failure does not

affect the other processes running in the same

processor.

4.2.2 Indirect evidence for AS failure probability

In the proposed quantification method, indirect

evidence is applied for the failure probability

estimates of application software modules using the

metrics “Complexity” and “Verification &

Validation” (V&V). In the case of AS modules in

RPS, they all belong to same V&V category. The idea

of the method is however that it could be applied to

systems which have lower safety class and V&V

requirements than RPS. The V&V metric would then

make variation between software modules in different

systems.

Regarding complexity, three categories are assumed

to be sufficient (high-medium-low). It is assumed that

failure probabilities differ by factor 10 between the

categories, i.e.,

pfd(high) = 10∙pfd(medium) (1)

pfd(medium) = 10∙pfd(low). (2)

Reference values for pfd have been searched from

literature
 [2]

. The range is large, and preferably

operating experience may be used to determine

justifiable reliability numbers. For RPS it can be hard

to find enough real demand data. However, data from

other I&C systems can be used, too, as long as the

platform is same. This will be a future task.

Meaning of high/medium/low has been studied by

comparing typical logic diagrams for AS modules in

RPS. It is apparent that most of them are in the “low”

and “medium” category, and “high” is a rare

exception. For the categorisation purposes, some

complexity metrics have been compared.
[2]

 The

metrics take into account number of elementary

function blocks (or library functions), types of

function blocks (e.g. with or without memory),

complexity of interconnections between function

blocks and number of inputs and outputs in the

analysed diagram, which are considered as indicators

for complexity. As an assessment method, this seems

to be practical, but the complexity categorisation

principle needs to be validated in future.

It should be noted that the “application software

module” can be defined in various manner, which

should be taken into account when assessing

complexity and analysing operating experience. The

largest meaningful definition for an AS module is an

I&C function, which usually consists of several

sub-modules. The I&C function level of abstraction

may miss the dependences between the functions

(due to common sub-modules). The sub-module level

of abstraction may lead to impractically high number

of basic events in PSA. Experiment with a full-scale

PSA for an NPP with digital safety I&C is needed to

find an appropriate definition for an AS module.

4.2.3 Split fractions

The probability pfd above covers both fatal and

non-fatal failure modes of AS modules as well as

“failure to actuate” and “spurious actuation” failure

modes, see Fig. 3. At the moment only engineering

judgements are available to judge the split fractions

of the AS module failure modes. In the future, the

aim is to search for as representative data as possible

to get supporting evidence for the split fractions.

Analysis and modelling of software in probabilistic safety assessment

 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014 317

P(AS fault)

P(AS fatal fault)
P(AS non fatal

fault)

P(AS non fatal

spurious

actuation)

P(AS non fatal

failure to actuate)

P(fatal) P(non-fatal) = 1 - P(fatal)

P(spurious) P(no signal) = 1 - P(spurious)

Fig. 3 Split fractions of the AS module failure probabilities [2].

(P(AS fault) = pfd).

4.2.4 CCF between related AS modules

Generally, the AS modules performing identical

function in redundant divisions are assumed to be

identical software modules. The conditional

probability of CCF is assumed to be 1, given a fault

in an AS module.

In addition to CCF between identical AS modules, it

is worth considering CCF between related AS

modules. At least two kinds of relationships can form

a potential to CCF:

 use of same elementary functions

 common functional requirements specifications.

With regard to the fault coupling by elementary

functions, it is in principle possible to assume fault in

an elementary function module, which would be then

a common fault for more than one AS module.

However, the position of this method is that faults in

elementary functions are practically eliminated due to

their being part of the rigorous verification and

validation of the system software. It is instead more

likely that an AS fault is caused by a wrong usage of

complex elementary function. Thus, the main

attention should be paid on the assessment of use of

complex elementary functions, and the fault coupling

can be associated with the coupling via common

functional requirements specifications.

With regard to the fault coupling by functional

requirements specifications, the interesting case is

possible CCF between two AS modules

implementing same I&C function in diverse

subsystems. There are numerous such examples in

the current way designing safety I&C, since it is an

overall requirement that the actuation of safety

function should be accomplished by two different

process parameters (e.g., temperature and pressure of

primary circuit). The structure of the actuation logic

is often same for the two “diverse” functions and they

are defined in the same functional requirements

specification. Conservatively, the conditional

probability of CCF could be assumed to be 1.

Optimistically, no dependency is assumed. Realistic

assessment is somewhere between. Future work is

needed to find a justifiable approach to assess the

degree of diversity.

5 Evaluation with the example PSA

In DIGREL, an existing simplified PSA model has

been complemented with fault tree models for a

four-redundant distributed protection system in order

to study and demonstrate the effect of design features

and modelling approaches. The model has been used

to test the effect of different levels of modelling detail,

CCF modelling, fail-safe principle and voting logic.

The example PSA-model represents a fictive boiling

water reactor (BWR), which has four-redundant

safety systems
 [1]

.

Generally, same failure modes (types 1, 2a, 2b, 3, 4a

and 4b) are considered in the model and the same

failure probabilities are used as suggested in Ref. [1].

The fault trees for I&C have been structured in

hierarchical manner starting from the actuator down

to measurements. The model of the digital I&C

currently consists of 680 fault trees pages, 460 basic

events and 100 hardware CCF groups. Software

faults are modelled with a total of 44 CCF basic

events.

The results with the example PSA model show that

software faults have a significant impact on the

overall result. Software faults in total have a

fractional contribution of about 9%.
[1]

 Fractions of

different types of software faults (cases 1, 2, 3 and 4

of Tables 1 and 2) are dependent on the assumed

probabilities and the design. It can, however, be

concluded that software faults in general have a

non-negligible effect on the results and should be

considered in a digital I&C PSA. Quantification of

software faults and the assessment of the degree of

HOLMBERG Jan-Erik, BÄCKSTRÖM Ola, and TYRVÄINEN Tero

318 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014

diversity between subsystems can therefore be

significant from the overall PSA results point of view.

The evaluations with the example model also showed

that the failure mode “spurious actuation” has some

impact and should not be ignored in PSA.

6 Conclusions
The advent of digital I&C systems in nuclear power

plants has created new challenges for safety analysis.

To assess the risk of nuclear power plant operation and

to determine the risk impact of digital systems, there is

a need to quantitatively assess the reliability of the

digital systems in a justifiable manner. Due to the

many unique attributes of digital systems, a number of

modelling and data collection challenges exist, and

consensus has not yet been reached.

Currently in PSA, computer-based systems are mostly

analyzed simply and conventionally. The conventional

failure modes and effects analysis and fault tree

modelling are utilized. The survey of literature and

PSA shows that software failures are either omitted in

PSA or modelled in a very simple way as CCF related

to the application software of operating system. It is

difficult to find basis for the numbers used except the

reference to a standard statement that a failure

probability 1E-4 per demand is a limit to reliability

claims, which limit is then categorically used as a

screening value for software CCF.

In the OECD/NEA DIGREL task, a failure modes

taxonomy was developed jointly by PSA and I&C

experts. The taxonomy will be the basis of future

modelling and quantification efforts. It will also help

define a structure for data collection and to review

PSA studies.

In the Nordic DIGREL project, a method for the

quantification of software failures has been

developed. The emphasis of the method is on the

quantification of the failure probability of an

application software module, which can lead to the

functional failure modes: failure to actuate on

demand a specific instrumentation and control (I&C)

function or spurious actuation of a specific I&C

function.

The quantification of the application software module

is based on two main metrics, complexity of the

application software and the degree of verification

and validation of the software. Common cause

failures and different failure modes are covered by

the method. Operational data may be used for

software reliability quantification but collecting and

using it is challenging and requires more research. The

outlined quantification method offers a practical and

justifiable approach to account for software failures

that are usually ignored in current PSAs.

The results with the example PSA show that software

faults have a significant impact on the overall result.

Quantification of software faults, consideration of

different failure modes and the assessment of the

degree of diversity between subsystems can therefore

be significant from the overall PSA results point of

view.

Nomenclature
APU Acquisition and processing I&C unit

AS Application software module

BBN Bayesian belief network

BWR Boiling water reactor

CCF Common cause failure

DIGREL Guidelines for reliability analysis of digital

systems in PSA context

EF Elementary function

I&C instrumentation and control

MU Main control room I&C unit for operators

NKS Nordic nuclear safety research

NPP nuclear power plant

pfd probability of failure per demand

PSA Probabilistic safety assessment

RPS Reactor protection system

SIL Safety integrity level

SyS System software module

V&V Verification and validation

VU Voting I&C unit

WGRisk Working Group on Risk Assessment

(OECD/NEA)

Acknowledgement

The work has been financed by NKS (Nordic nuclear

safety research), SAFIR2014 (The Finnish Research

Program on Nuclear Power Plant Safety 2011–2014)

and the members of the Nordic PSA Group:

Analysis and modelling of software in probabilistic safety assessment

 Nuclear Safety and Simulation, Vol. 5, Number 4, December 2014 319

Forsmark, Oskarshamn Kraftgrupp, Ringhals AB and

Swedish Radiation Safety Authority. AREVA GmbH

has provided insights and data for the software

reliability estimation. The taxonomy work is based on

contributions from the WGRISK/DIGREL task group

members. NKS conveys its gratitude to all

organizations and persons who by means of financial

support or contributions in kind have made the work

presented in this paper possible.

References
[1] AUTHÉN, S., HOLMBERG, J.-E., LANNER, L., and

TYRVÄINEN, T.: Guidelines for reliability analysis of

digital systems in PSA context - Phase 4 Status Report,

NKS-302, Roskilde: Nordic nuclear safety research

(NKS), 2014.

[2] BÄCKSTRÖM, O., HOLMBERG, J.-E.,

JOCKENHÖVEL-BARTTFELD, M., PORTHIN, and

M., TAURINES, A.: Software reliability analysis for

PSA, NKS-304, Roskilde: Nordic nuclear safety

research (NKS), 2014.

[3] Failure modes taxonomy for reliability assessment of

digital I&C systems for PRA, report prepared by a task

group of OECD/NEA Working Group RISK, Paris:

OECD/NEA/CSNI, 2014.

[4] DAHLL, G., LIWÅNG, B., and PULKKINEN, U.:

Software-Based System Reliability. Technical Note,

NEA/SEN/SIN/WGRISK(2007)1, Paris: Working

Group on Risk Assessment (WGRISK) of the Nuclear

Energy Agency, 2007.

[5] CHU, T.-L., MARTINEZ-GURIDI, G., YUE, M.,

SAMANTHA, P., VINOD, G., and LEHNER, J.:

Workshop on Philosophical Basis for Incorporating

Software Failures in a Probabilistic Risk Assessment,

BNL-90571-2009-IR, New York: Brookhaven National

Laboratory, 2009.

[6] SMIDTS, C., and LI, M.: Software Engineering

Measures for Predicting Software Reliability in Safety

Critical Digital Systems, NUREG/GR-0019,

Washington D.C.: United States Nuclear Regulatory

Commission, 2000.

[7] SMIDTS, C., and LI, M.: Preliminary Validation of a

Methodology for Assessing Software Quality,

NUREG/CR-6848, Washington D.C.: United States

Nuclear Regulatory Commission, 2004.

[8] CHU, T.-L., YUE, M., MARTINEZ-GURIDI, G., and

LEHNER, J.: Review of Quantitative Software

Reliability Methods, BNL-94047-2010, New York:

Brookhaven National Laboratory, 2010.

[9] HOLMBERG, J.-E.: Software reliability analysis in

probabilistic risk analysis, Nuclear Safety and

Simulation, 2012, 3(4): 281–291.

[10] Nuclear power plants – Instrumentation and control

systems important to safety – Classification of

instrumentation and control functions, IEC 61226.

Second edition, Geneva: International Electrotechnical

Commission, 2005.

[11] Licensing of safety critical software for nuclear reactors –

Common position of seven European nuclear regulators

and authorized technical support organisations, SSM

Report 2010:01, Stockholm: SSM, 2010.

[12] HAAPANEN, P., HELMINEN A., and PULKKINEN

U.: Quantitative reliability assessment in the safety case

of computer-based automation systems. STUK-YTO-TR

202. Helsinki: STUK, 2004.

[13] VARDE, P. V., CHOI, J. G., LEE, D. Y., and HAN, J. B.:

Reliability Analysis of Protection System of Advanced

Pressurized Water Reactor-APR 1400,

KAERI/TR-2468/2003, Daejeon: Korea Atomic Energy

Research Institute, 2003.

[14] Functional safety of electrical/electronic/programmable

electronic safety-related systems. IEC 61508, second

edition. Geneva: International Electrotechnical

Commission, 2010.

[15] Estimating Failure Rates in Highly Reliable Digital

Systems. EPRI TR-1021077, Palo Alto: Electric Power

Research Institute, Inc., 2010. Limited distribution.

[16] AUTHÉN, S., WALLGREN, E., and ERIKSSON, S.:

“Development of the Ringhals 1 PSA with Regard to the

Implementation of a Digital Reactor Protection System,”

Proc. 10th International Probabilistic Safety Assessment

& Management Conference, PSAM 10, Seattle,

Washington, June 7–11, 2010, paper 213.

[17] ENZINNA, B., SHI, L., and YAN, S.: “Software

Common-Cause Failure Probability Assessment,”

Proc.6th American Nuclear Society International

Topical Meeting on Nuclear Plant Instrumentation,

Control, and Human-Machine Interface Technologies,

NPIC&HMIT 2009, Knoxville, Tennessee, April 5–9,

2009.

[18] JÄNKÄLÄ, K.: “Reliability of New Plant Automation

of Loviisa NPP,” Proc. DIGREL seminar Development

of best practice guidelines on failure modes taxonomy

for reliability assessment of digital I&C systems for PSA,

October 25, 2011, VTT-M-07989-11, Espoo: VTT,

2011.

[19] Recommendations on assessing digital system reliability

in probabilistic risk assessments of nuclear power plants,

NEA/CSNI/R(2009)18, Paris: OECD/NEA/CSNI, 2009.

