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Abstract: In this paper, single-phase experiments were conducted in different sinusoidal flow condition for 

studying the dynamic response of measurement sensors. The obtained experimental data were fitted as the form of 

transfer function between flow rate signal as Input and pressure drop along the channel as Output of the dynamical 

system and to give the transfer function model of the second order model. By the derived transfer functions it 

becomes possible to trace the actual flow condition in the channel, by which it becomes possible to measure 

magnitude deviation and the phase difference caused by the sensors’ natural dynamic response delay.  
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1 Introduction
1
 

There arises various kinds of error to measure any 

parameters in any experiment. One kind of error is 

caused by the response delay of the sensors when 

measuring flow. This problem can be neglected in 

steady state condition when only the average value is 

in concern. But when the instantaneous value is 

needed to measure as precisely as possible, it is not 

so easy as to measure it for steady state value. For 

example, when the pressure value in the flow channel 

jumps sharply from 0 to 1, the measures pressure 

value would not be like a sharp jump but a smooth 

curve gradually approaching to the final value as 

shown in Fig. 1.  

 

In case of changing flow as sinusoidal wave, the 

measured value would be, as seen in Fig.2, both 

amplitude changing and phase difference. This 

problem of instantaneous value measurement will 

bring the mismatching of the flow rate data with the 

pressure drop data in the flow channel experiment 

with dynamically changing flow condition. From the 

practical point of view, it will become a safety issue 

for any industrial system. For example, the sensors 

for temperature, pressure and flow rate setting in 

nuclear power plant should provide relatively precise 

instantaneous signal to ensure that the automation 

control system to measure their correct values and to 
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make timely actions in order to avoid serious 

situations such as nuclear fuel burn-out. Therefore, it 

is essential to understand the nature of measurement 

errors to be taken into consideration in safety design. 

Fig. 1 Step input and its output. 

Fig. 2 Sinusoidal input and its output. 

 

However, it is difficult to clarify the nature of 

measurement error solely by theoretical method, 

mailto:gaopuzhen@sina.com


ZHOU Bao, and GAO Puzhen 

168 Nuclear Safety and Simulation, Vol. 6, Number 2, June 2015  

because details of the entire measure system such as 

sensor material, geometry, quality condition, 

connection condition, installation and environmental 

condition. Moreover some of these conditions may be 

changing during operation.  

 

As an alternative way to solve this issue, we can 

apply an arbitrary equation model for the theoretical 

analysis to be able to detect the behavior of the sensor. 

The general model comes from the first-order, linear 

time-invariant (LTI) dynamic response system
 [6]

. As 

an example, a simple heat transfer problem
 [12]

 is 

introduced as below,   

( )
( ) ( )

dO t
I t O t

dt
  

        

(1) 

where I and O : functions of time t, and :  

Exponential Decay Constant. The term I is regarded 

as the system input (force function describing an 

external driving function of time), while O is the 

response, or system output. By conducting Laplace 

formation for Eq.(1), we get  

( ) 1/
( )

( ) 1/

O s
G s

I s s




 

         

(2) 

where G(s) is called transfer function. 

In case of step input signal I given by  

0, 0
( )

, 0m

t
I t

A t


 

            

(3) 

the obtained Laplace formation is Am/s, and so 

1/
( )

1/

mA
O s

s s




 

           

(4) 

By the inverse Laplace transformation of Eq.(4), we 

get 

( ) (1 )
t

mO t A e 


 
          

(5) 

where  is defined as Time Constant which means 

how long time the output value needed to become 63% 

of the input value. And its long time solution is 

( ) mO t A
              

(6) 

For sinusoidal input, 

( ) sin( )mI t A t
          

 (7) 

The long time solution is  

2

sin( )
( )

1 ( )

mA t
O t

 







        

(8) 

where 

tan( ) 
             

(9) 

As seen in Eq. (8), the amplitude will vary and there 

will be phase difference between I and O.  

The above example is the first order system. While 

the system to be studied is not necessarily has the 

same order. In this paper, we mainly discuss on the 

variation of amplitude and the phase difference by 

conducting an experimental research where 

sinusoidal wave is added on the part of input signal 

while observing the output signal in the experimental 

set up.  

 

The target experiment is related with a simple 

thermal-hydraulic test section and the sensors 

equipped in the test section are both flow rate and 

pressure drop along the test channel. Gao Pu-zhen 
[5]

 

etc. studied the pressure drop of single-phase 

sinusoidal fluctuation flow in a circular cross section 

pipe of the diameter 16mm. They treated the delay 

time problem simply by counting the difference 

between the two starting point of the data, while 

errors in n examples was relatively large to be 

compared with both their theoretical analysis on 

laminar flow condition and the analytic results by 

CFD (Computational Fluid Dynamics). However, 

they did not consider the dynamic response. 

 

In the area of automatic control, researchers discuss 

on this sensor problem in detail both in theoretical 

and experimental studies
[12]

 where the usage of 

reference sensor is assumed. But for authors of this 

paper it is difficult to have a reference sensor to give 

the exact condition of input signal. It is also 

impractical to disassemble the meters used in the 

authors’ test section. Although the instructions of 

some meters give the time constant values, most of 

them are for step input system, also it is hardly in 

good agreement with the different operating situation, 

unless we can make certain that it fits with the first 

order system. Therefore in this paper an experimental 

study was conducted on sinusoidal flow in different 

flow conditions to fit the experimental data with the 

dynamic response system transfer function in order to 

detect the variation of amplitude and the phase 

difference of the Flow Meter and Differential 

Pressure Transmitter.  

 

2 Experimental system 

The experimental system employed in this study is 

illustrated in Fig. 3. As is shown in Fig. 3, it consists of 

two parts, the experimental loop and the Data 

Acquisition System. In Fig. 3, the solid line represents 

the pipe connection, while the dashed line, the circuit 
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connection, and the details of the two connections are 

explained in 3.1 and 3.2, respectively. 

Fig. 3 Experimental loop. 
 

1 Tank, 2 Pump, 3 Valve, 4 Flow Meter,  

5 Thermometer, 6 Test Section, 7 Differential Pressure 

Transmitter, 8 Valve, 9 Valve, 10 Inverter, 11 NI DAQ, 12 

PCI-1711, 13 PC 

 

3.1 Pipe connection 

The water is pumped from the tank, and it flows 

through Flow Meter, thermometer, test section and 

back to the tank to form a flow loop. The size of test 

section is 40mm×3mm of Width ×Height in 

rectangular channel. There are two pressure taps on it, 

connecting to the Differential Pressure Transmitter, 

whose distance is 1.4m. The pump power is controlled 

by an Inverter. The control signal is 0-5 V analog 

voltage signal, which comes from a PCI-Lab Card 

PCI-1711. This card is programmed to collect digital 

sinusoidal signal and convert it to analog sinusoidal 

signal.  

 

3.2 The Data Acquisition System 

All of the signals, flow rate signal, pressure drop 

signal, temperature signal and control signal are 

collected by National Instruments Data Acquisition 

System card with the collection frequency of 50 Hz. 

 

3 Pre-experiment 

To test the reliability of entire experimental system, 

steady state flow experiments were carried out in 

beforehand. The comparison of the experimental data 

with empirical formulas can be seen in Fig. 4, where 

Cl is a constant value for rectangular channel, which 

defined by Shah and London 
[2]

 (for the general pipe 

which should be λ=64/Re); The constant Ct is defined 

by Sadatomi (1982)
 [3]

, the experimental data both in 

the laminar region and the turbulent region agrees 

well with the empirical equations which indicates the 

Differential Pressure Transmitter and the Flow Meter 

works fine in steady state. 

  

 
Fig. 4 Comparison of experimental data with empirical 

formula. 

 

4 Calculation of the phase difference 

and the variation of magnitude  

4.1 Experimental procedure  

Totally 173 cases of single phase sinusoidal flow 

experiment had been conducted with the varying 

period of 6.26S, 10.95S, 15.64S, 20.33S, 30.50S and 

40.67S, respectively, and also with average Reynolds 

number from 1292 to 11577 (Reynolds number 

amplitude from 486 to 6013).  

 

The experimental procedure is shown in Fig. 5. First, 

input the parameters of digital sinusoidal signal such 

as the average, the amplitude and the period to the 

Control Program interface. This digital signal is 

collected and converted to analog signal. The Inverter 

amplify the signal to change rotating speed of the 

pump, and then the pump push the water. 

 

4.2 Calculation procedure 

Besides collecting the pressure drop and flow rate data, 

the control signals were collected at same time of 

which expression is given by Eq. (11). This is for 

setting benchmarking signal from which all the values 

of the dynamic input signal and the output signals are 

obtained. Both the obtained data of pressure drop data 

and flow rate data are explained in 4.2.1 and 4.2.2, 

respectively, as below. 
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4.2.1 Pressure drop data 

As can be seen in Fig. 6, there are two transfer 

procedures between the input signal and the 

pressure drop output signal. They are: 

(a)Transfer procedure from control signal to pump 

rotation speed, and  

(b)Transfer procedure from pump rotation speed to 

output signal. 

 

The first one (a) is that the control signal is turned to 

the pump’s rotating speed.  This can be seen as a 

dynamic system
[13]

 that notwithstanding the setting 

of a constant target rotating speed, the pump will 

not reach it at once but gradually reach the steady 

state constant speed just like Fig. 1 shows. So the 

rotating speed of the pump has amplitude change 

and time difference with the control signal as given 

by Eq. (12).  

 

Changing the pump rotating speed can change the 

pressure of water, and this causes the pressure 

propagation with speed of sound, although it can be 

neglected in the authors’ experimental system. The 

pump rotating speed has square relation with the 

pressure value, which is the same with the pressure 

drop.  

 

 

2

2

0 0

2 2 2

( )

sin( )

sin ( )

( )

2

R

S R R

R

S R R

P t

R R R M t

R M t

k R t

k
 

 

 
 
   






  

(14)

 

 

The second transfer procedure (b) is that the 

pressure drop of the water in the channel turn into 

the output signal coming from the Differential 

Pressure transmitter. It can be also regarded as a 

dynamic response system. So the input signal for 

the Pressure Transmitter is given by 

 
2 2

0 2( ) sin( ) sin ( )S R S RP t P P t P t       (15) 

 

The second order item in Eq.(15) can be neglected 

because the relation Rs « R0 holds in most of the 

authors’ experimental cases and it makes simplify 

the problem. Also when fitting the experimental 

data with both 1
st
 order and the 2

nd
 order Fourier 

series, the authors of this paper found that the 

differences are minor, although the second order is 

more precise than the first order. So the input signal 

for the Pressure Transmitter is given by  

 

0

2

0 0

( ) sin( )

sin( )2

S R

R S R R

P t P P t

R R R M tk

 

 



   

 


(16) 

 

Therefore, both the input and output signal should 

be given by the following equations by being 

normalized by the signals with removing the 

average item first:  

0

( ) sin( )2 S
Pm R R

R
I t M t

R
 

    

(17)

 

0

( ) sin( )mS
P P

P
O t t

P
 

      

(18) 

It is difficult for the authors of this paper to 

determine the exact condition of ump’s rotating 

speed R(t) as a function of time t to decide both Rs 

and Ro. But the authors of this paper know that the 

control signal has proportional relationship with 

the target pump’s rotating speeds in steady state, 

and therefore they assume the following relation 

0 0

S SC R

C R


             

(19) 

Digital signal:

 

 (10) 

PCI-1711 Data Acquisition card 

Analog signal:

   

(11) 

Pressure drop: 

 

(13) 

Inverter 

Pump

 

(12) 

Fig. 5 Experimental flow chart. 

Fig. 6 Pressure drop’s dynamic I/O system. 
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This means that the authors of this paper look upon 

C(t) as the input signal instead, and take this 

relation between pump’s rotating speed and the 

pressure into consideration, and consider the two 

dynamic system procedure as one. The input signal 

is assumed to be given by 

0

( ) sin( )2 S
P

C
I t t

C


        

(20) 

because the authors of this paper do not know what 

order of the dynamic response systems is. They use 

MATLAB dynamic system as the black box tools to 

fit the experimental data of the authors of this paper. 

For doing this the authors of this paper have to 

guess how many zero points and how many poles 

for the Laplace transfer function. It is certain that it 

has two poles at least, as the input signal has to go at 

least through two dynamic systems. So the authors 

of this paper tried from 2 to 5 poles and 0 to 4 zero 

points, among which the 2 poles and 0 zero points 

one has reasonable results, because the accuracy in 

this case is more than 95%. And more poles with 

more zero points cannot necessarily improve this 

fitting accuracy. So the authors of this paper got the 

transfer function as given by the following 

equations, 

 

2

4.51
( )

5.227 4.845
PG s

s s 


       

(21)

 
4.0230 1.2045

( )
4.0230 1.2045

PG s
s s

 
      

(22)

 
 

Considering the formation of this transfer function, 

it can be divided into two first order systems as is 

given by Eq.(22), where one is for the pump’s 

transfer system while the other one for the Pressure 

Transmitter’s system. The authors of this paper 

checked the time constant of Pressure Transmitter 

in the instruction manual, where it indicates that the 

setting in the factory is 0.2s. By using these two 

transfer function, the authors of this paper 

calculated the time constant for step response. So 

the authors of this paper pick the closer value in the 

instruction manual, as the Pressure Transmitter’s 

transfer function, while the other one as the pump’s 

transfer function. The resultant equations are given 

by  

4.0230
( )

4.0230
PmG s

s


          

(23)

 

1.2045
( )

1.2045
RG s

s


          

(24) 

For Eq. (23), they got the time constant 0.25s. For 

Eq. (24) they got the time constant 0.84s.  

 

4.2.2 Flow rate data 

As for the flow rate data, it should have a 

proportional relationship with the pump’s rotating 

speed in steady state. The authors of this paper 

found that the data fit with the sinusoidal equation 

(first order Fourier series) very well. So they have 

the output signal for the flow rate: 

0

( ) sin( )mS
Q Q

Q
O t t

Q
    

   

(25) 

It has three transfer procedures from the input 

signal to the output signal. The 1
st
 one is the control 

signal turning into the pump’s rotating speed, the 

2
nd

 one is the pressure changing the flow rate, and 

the 3
rd

 one is the water flow rate turning into the 

output signal which is measured by the Flow Meter. 

 

Among those three transfer procedures mentioned 

above, the 2
nd

 one can be determined in advance by 

the following way. 

 

Consider the pressure drop given by  

( ) ( )( )f at P tP P t 
       (26) 

where Pf(t) is friction pressure and Pa(t) is 

acceleration pressure.  

Acceleration pressure Pa(t) is given by  
( ) ( )

( ) l
a

dG t dQ t
t

dt A dt

L
P L


      (27) 

where L :distance between the two pressure taps 

and Gl : mass flow density (kg/m
2
·s).  

If the flow rate of water is given by 

0( ) sin( )S xQ t Q Q t  
      

(28) 

then the friction should have the same change with 

the flow rate, because the friction pressure comes 

from the water flow. So we can set 

0( ) sin( ) cos( )f fS x S xP t P t Q t
A

L
P     


   

                                  

(29) 

Here we set  

as SP Q
A

L





          

(30) 

Then we get  
2 2

0( ) sin( )f fS aS x aP t P P tP      
 
(31) 

where 
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2 2
sin( ) aS

a

fS aS

P

PP
 

         

(32) 

Compare Eq. (31) with Eq. (16) then we obtain 

0 0fP P
             

(33) 

sin( ) aS
a

S

P

P
 

           

(34) 

x a R   
           

(35) 

So the input signal for the Flow Meter should be 

given by  

0( ) sin( )S R aQ t Q Q t       (36) 

Or it can be given by 

0( ) cos( )sin( )

sin( )cos( )

S a R

S a R

Q t Q Q t

Q t

  

  



 

 
  (37) 

In Eq. (37), the first 2 items should have 

proportional relationship with the pump’s rotating 

speed, so that it has square relationship with the 

pressure drop. So we have 
2

0 0

0

2 cos( )s a

S

Q Q Q

P P


        (38) 

Together with Eqs. (21), (32) and (36) 

we can obtain  

0

0

sin(2 )a

QL

A P


 

       

(39)

 

So we can change the output signal as 

0

( ) cos( )sin( )mS
Q a Q a

Q
O t t

Q
    

 

(40) 

Thus the number of transfer procedures decreases 

from 3 to 2, and the remaining ones are for the 

pump and the Flow Meter with the corresponding 

input signal given by  

0

( ) sin( )S
Q

C
I t t

C


         

(41) 

Using the same approach to fit the flow rate data, 

we can get the transfer function with its accuracy 

being more than 95%. 

3 2

1.504

3.695 4.042 1.306

1

( )

( 2.0029)( 1.0988)( 0.5935)

.504

QG s

s s

s s s

s


  

  


 

(42) 

So the Flow Meter’s transfer function is given by 

( )
( )

( )

Q

Qm

R

G s
G s

G s


         

(43) 

So far the author of this paper can obtain the 

pressure drop and flow rate, by Laplace transform 

and its inverse transform from the authors’ data as 

output; 

1 ( ( ))
( )

( )

m

Pm

La P t
P t

G s
La

       

(44)

 

1 ( ( ))
( )

( )

m

Qm

La Q t
Q t

G s
La

      

(45) 

Or from the input 
1

0 0( ) [ ( ( )) ]p RP t P P La I t GLa  
 

(46)

 
The same way to obtain Q(t) as for the pressure 

from the input, with being that the amplitude need 

to be divide by cos(a), the phase need to be minus 

a. 

The factor (s+1.0988) in the denominator of Eq. 

(42) is close to the denominator of the pump’s 

transfer function’s, Eq. (24), which can verify the 

authors’  choice on which one is the pump’s and 

which one is the Pressure Transmitter’s. 

 

5 Results 

Figure 7 shows measured pressure amplitude data 

versus corrected pressure amplitude data, while Fig. 

8, measured flow rate amplitude data versus 

corrected flow rate amplitude data. Figure 9 shows 

the calculated phase angle caused by sensor’s 

dynamic response. Figure 10 shows Bode diagram 

for the Flow Meter. 

 

Figures 7, 8 and 9 show how different of measured 

data from the revised data. It can be seen that for the 

pressure drop data, the amplitude would vary 

between 85% and 100%. The flow rate data’s 

amplitude would vary from 45% to 130%. The 

pressure drop’s phase angle is calculated to be less 

than 20°, while the flow rate’s phase angle from ca.20° 

to ca. 90°. The pressure drop’s data seems to be 

acceptable, while the flow rate’s data not. So the 

authors of this paper reconsidered the Flow Meter’s 

transfer function GQm(s) by the following ways. 

 

3 2

2

( )
( )

( )

1.2045

1.2045

1.504

3.695 4.042 1.306

1

0.0406
0.8008 1.9945 0.8346

1.2045

Q

Qm

R

G s
G s

G s

ss s s

s s
s








  

  


(47) 

 

Neglect the last item 0.0406/(s+1.2045) in the 

denominator of Eq. (47), then Eq. (47) is written as   

2

1

0.8008 1.9945 0.8346
( )Qs

s s
G s

 
    (48) 
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This Eq.(48) is the typical 2
nd

 order dynamic 

response system, which is similar to the 

mass-spring-damper system
 [12]

 whose transfer 

function is given by 

2

1
( )

s s
G s

m c k 


         

(49)

 

In this system of Eq.(49), the performance depends 

on two parameter ζ and n. The relation of the 

transfer function’s coefficients to ζ and n. is given 

by 

n

k

m
 

,
2

c

mk
 

 

For GQs given by Eq. (48), ζ =

 

1.2198 and 

n=1.0209.  

 

 
 

Fig. 7 Measured pressure amplitude data vs. corrected 

pressure amplitude data. 

 

 

Fig. 8 Measured flow rate amplitude data vs. corrected flow 

rate amplitude data.

  

 

 
 

Fig. 9 The phase angle caused by sensor’s dynamic response. 

 

Fig.10 Bode diagram for the Flow Meter. 

 

In Fig. 10, it gives some cases with different ζ. 

Firstly, as can be seen in Fig.10, the data by the 

authors of this paper fit the simplified Flow meter 

transfer function GQs well. So it can be simplified 

as the mass-spring-damper model. Secondly, if the 

water’s fluctuation frequency is very close to the 

system’s natural frequency area, /n1, both of 

the amplitude and the phase difference changes 

significantly with frequency, which is called 

resonance. While all of our experimental cases’ 

frequency are close to this area, which is supposed 

to be the reason why the flow rate data vary from 

the fixed value so far. So, for the experiment or 

practical usage, we should avoid to measure the 

high frequency, which almost close to the sensor’s 

natural frequency, otherwise the data need to be 

revised significantly.  

 

 

 

 

 



ZHOU Bao, and GAO Puzhen 

174 Nuclear Safety and Simulation, Vol. 6, Number 2, June 2015  

6 Discussion 

The authors of this paper would like to point out the 

following reservations as to the results obtained in 

5. 

(1) The method proposed in this paper is a kind of 

pre-treatment procedure to make the problem easier 

to handle by some simplification: The flow field is 

simplified as one-dimensional purely axial flow, 

with ignoring the radial flow component by 

negligible radial velocity and radial variation of 

pressure. 

(2)The test section for this experiment is narrow 

rectangular channel. Since the authors of this paper 

did not take the specific resistance character, so this 

method is considered to be applicable for other 

shape's cross section. For the same reason it also 

may be applied to laminar, turbulence and two 

phase sinusoidal flow conditions.  However, those 

issues have not tried in the authors’ experimental 

study. 

(3)DNS (Direct Numerical Simulation) method is 

reliable for calculating the flow condition in 

channel, which has no dynamic response 

measurement problem. So the authors’ future work 

is to do some single phase and two phase sinusoidal 

flow simulation with DNS method to compare the 

simulation data with rivised experimental data to 

further understand the resistance pressure character. 

 
6 Conclusion 
In this paper, single-phase experiments were 

conducted in different sinusoidal flow condition for 

studying the dynamic response of measurement 

sensors. The obtained experimental data were fitted 

as the form of transfer function between flow rate 

signal as Input and pressure drop along the channel 

as Output of the dynamical system and to give the 

transfer function model of the second order model. 

By the derived transfer functions it becomes 

possible to trace the actual flow condition in the 

channel, by which it can be possible to measure 

magnitude deviation and the phase difference 

caused by the sensors’ natural dynamic response 

delay.  

 

Lastly, the following issues were also pointed out 

from the authors’ conducted experimental studies. 

(1)The pump with sinusoidal rotating speed will 

give 2
nd

 order Fourier series form integral pressure 

drop and friction pressure drop. It will force the 

fluid to sinusoidal form flow rate. The integral 

pressure drop and the flow rate naturally has phase 

difference which is caused by the acceleration of the 

water.  

(2)The sensors’ dynamic responding problem 

naturally exists, and it can cause measuring errors, 

acting as the sources of amplitude varying and 

phase difference.  

(3)If the measurement object has the frequency 

which is accidently close to the natural frequency of 

the sensor, it will cause significant errors, so that it 

should be avoided or modified. The dynamic 

system analysis theory with routine experiment 

provide an approach to calculate and correct this 

error.  

 

Nomenclatures 
A  Cross sectional area of experimental test section 

[m
2
] 

Am  Amplitude 

C0  Average digital control voltage [V] 

Cs  Digital control voltage amplitude [V] 

G  Transfer function 

Gl  Mass flow density [kg/m
2
·s] 

GP  Pressure drop’s transfer function 

GPm  Pressure Transmitter’s transfer function 

GQ   Flow rate’s transfer function 

GQm  Flow Meter’s transfer function 

GR  Pump’s transfer function 

I    Input signal 

IP   Pressure drop’s input signal 

IPm  Pressure Transmitter’s input signal 

IQ   Flow rate’s input signal 

KR  Coefficient of pressure to pump’s rotating speed 

square  

L   Distance of two pressures taps [m]  

La  Laplace transform operator 

MR  Magnitude of pump’s amplitude 

P   Pressure [kPa] 

O   Output signal 

OP   Output signal of Pressure Transmitter 

OQ  Output signal of Flow Meter 
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Pa   Acceleration pressure drop [kPa] 

PaS  Acceleration pressure drop amplitude [kPa] 

P0  Average pressure drop [kPa] 

Pf0  Average friction pressure drop [kPa] 

Pfs  Friction pressure drop amplitude [kPa] 

PS  Pressure drop amplitude [kPa] 

PS2 Pressure drop amplitude for the 2
nd

 order item 

[kPa] 

Q  Flow rate [m
3
/s] 

Q0  Average flow rate [m
3
/s] 

QS   Flow rate amplitude [m
3
/s] 

QmS Measurement value of flow rate amplitude [m
3
/s] 

R  Pump’s rotating speed [rad/s] 

R0  Average of pump’s rotating speed [rad/s] 

RS  Amplitude of pump’s rotating speed, [rad/s] 

s   Laplace transform parameter, -   

t   Time [s] 

tPm  Pressure Transmitter delay time [s] 

tQm  Flow Meter delay time[s] 

T  period[s] 

TD  Digital control voltage period [s] 

Y  Pump’s control signal [V] 

ρ  Water density [kg/m
3
] 

  Tme constant [-] 

λ  Friction coefficient  [-] 

  Frequency [rad/s] 

n  Natural frequency [rad/s] 

ζ   Damping ratio [ -] 

   Phase angle [rad] 

a  Acceleration phase [rad] 

R  Pump’s phase [rad] 

P  Pressure drop phase [rad] 

Pm  Measurement phase of Pressure Transmitter [rad] 

Q  Flow rate phase [rad] 

Qm  Measurement phase of Flow Meter [rad] 
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