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Abstract: The acoustic data remotely measured by hand held type microphones are investigated for 
monitoring and diagnosing the rotational machine integrity in nuclear power plants. The plant operator’s 
patrol monitoring is one of the important activities for condition monitoring. However, remotely 
measured sound has some difficulties to be considered for precise diagnosis or quantitative judgment of 
rotating machine anomaly, since the measurement sensitivity is different in each measurement, and also, 
the sensitivity deteriorates in comparison with an attached type sensor. Hence, in the present study, 
several advanced signal processing methods are examined and compared in order to find optimum 
anomaly monitoring technology from the viewpoints of both sensitivity and robustness of performance. 
The dimension of pre-processed signal feature patterns are reduced into two-dimensional space for the 
visualization by using the standard principal component analysis (PCA) or the kernel based PCA. Then, 
the normal state is classified by using probabilistic neural network (PNN) or support vector data 
description (SVDD). By using the mockup test facility of rotating machine, it is shown that the 
appropriate combination of the above algorithms gives sensitive and robust anomaly monitoring 
performance. 
Keyword: Acoustic Monitoring, PCA, Kernel-based PCA, PNN, SVDD, Cepstrum 
 
 

1 - Introduction1

Condition based maintenance (CBM) is one of the 
important activities for both reliable and efficient 
nuclear power plant operation. Recently, the new 
maintenance regulation has started in Japan to allow 
the utilities to decide optimum maintenance and 
operating periods for the plants. This helps the flexible 
and efficient plant operation, however, at the same 
time, the responsibility of utilities increases to assure 
high plant reliability. From this point of view, the 
condition monitoring activities will be more and more 
important. 
 
In the present paper, the acoustic data remotely 
measured by handy type microphones are investigated 
for monitoring and diagnosing the rolling bearing type 
rotational machine integrity in nuclear power plants. 
The plant operator’s patrol monitoring is one of the 
important activities for the above-mentioned condition 
monitoring. However, remotely measured sound has 
some difficulties in its measurements for its precise 
diagnosis or quantitative judgment of rotating 
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machine anomaly, since the measurement sensitivity is 
varied in each patrol, and also, is less than the 
attached type accelerometer. 
 
Hence, the author investigates the various kinds of 
advanced acoustic signal processing methods to 
increase their sensitivity of anomaly monitoring. 
Furthermore, the robustness of the monitoring to the 
operating condition change is also discussed, since 
both the sensitivity and robustness are very important 
in practical applications. In the author’s previous 
paper [1], the signal pre-processing method was 
proposed, where the acoustic signal is normalized 
based on the fundamental oscillation period which is 
extracted by a zero-crossing interval of filtered 
acoustic signal. Then, the individual periodic pattern 
is converted into the same length data and used for 
pattern recognition. In this study, it was noticed that 
the sensitivity and robustness of the monitoring 
largely depended on this pre-processing algorithm.  
So, effectiveness of signal pre-processing, or, in other 
words, signal feature extraction algorithms was further 
examined by using the mockup test facility of rolling 
bearing type rotational machine which can simulate 
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various kinds of anomaly [2-4]. Here, the extracted 
signal feature patterns were classified by using both 
the standard principal component analysis (PCA) and 
kernel-based PCA (KPCA) approach, which were able 
to reduce the dimensions of feature vectors and extract 
an effective feature space for the visualization. The 
reason why different kinds of signal processing 
methods were examined was conducted in order to 
find both sensitive and robust methods for acoustic 
monitoring of rotating machines. Since the skilled 
human ability is superior to the machine learning 
capability from viewpoints of anomaly detection 
sensitivity, it is desired to investigate how to catch up 
the human ability by machine learning technologies. 
Furthermore, it should be noted that human experts 
also have the robust classification capability which 
can discriminate abnormal states from normal ones 
even though the machine is operated in different 
conditions. So, both sensitive and robust machine 
learning capability should be pursued by using the 
above signal processing methods, or, some heuristic 
data mining methods. 
 
In the above research [1-3], extracted small dimension’s 
feature vectors were modeled by the probabilistic 
neural network (PNN) and support vector data 
description (SVDD) in order to discriminate the 
normal state from the abnormal ones. Since the PNN 
or SVDD can classify the known normal state from 
other unknown abnormal states, so-called ‘don’t know 
states’, it is very useful for automated condition 
monitoring. The developed algorithm was applied to 
the acoustic data measured by mockup test facility. 
Here, several kinds of known abnormal state data 
were measured, which consisted of inner and outer 
race defects, or bearing ball defects, as well as normal 
operation data in different rotating speed conditions. 
 
In the present paper, the author will review the above 
results and discuss how the classification capability 
increases by introducing the new signal processing 
methods. Furthermore, robust classification capability 
to the operating condition change will also be 
discussed. 
 
2 - Signal processing methods 
2.1 - Pre-processing for feature extraction  

For anomaly detection using acoustic signals, three 
kinds of steps will be proposed in the present paper: (1) 
acoustic signal pre-processing for feature extraction, 
(2) visualization in the two-dimensional space by 
extracting typical signal features, and, (3) evaluation 
of discrimination function for anomaly monitoring.  
In step (1), various kinds of methods have been 
examined by referring the speech or speaker 
recognition research technologies [5]. In this research 
area, various combinations of signal pre-processing 
and classification algorithms have been pursued to 
improve their speech recognition performance. So, 
these algorithms will be expected to increase the 
acoustic anomaly monitoring performance. Among 
them, the following three feature patterns are adopted 
and compared with each other. 
 
2.1.1 - Log-scale auto-power spectral density 
(log-APSD) 
This is a simple frequency spectrum of raw acoustic 
data. Here, the log-scale pattern of 0-22 kHz 
frequency range divided by 512 points is used as the 
feature vector. The frequency axis is treated by the 
linear scale. Each pattern is evaluated by 0.2 second 
length acoustic data. Also, in order to compensate the 
measurement sensitivity variation, each signal is 
normalized by its RMS (Root Mean Square) value. 
 
2.1.2 - Mel-scale auto-power spectral density 
(Mel-scale-APSD) 
Mel-scale is a perceptual scale of frequency pitches 
which is often used in speech recognition [5]. The 
frequency scale is converted into the following 
Mel-scale: 

)
700

1(log1127 fm e +×=               (1) 

Here, the 512 frequency resolutions are compressed 
into 30 dimensions by this transformation. As for the 
amplitude, the log-scale is used. 
 
2.1.3 - Cepstrum [5]

Cepstrum is defined by the Fourier transformation of 
log-APSD, and has a time domain scale called by 
quefrency. If the frequency spectrum X(w) can be 
assumed as the product of sound source G(w) and 
transfer function H(w), Cepstrum can be calculated as 
follows: 
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)(log)(log)(log)( 111 ωωωτ HGXc −−− +== FFF  (2) 

The second term placed on the right-hand-side of the 
equation corresponds to the envelopment of frequency 
spectrum.  So, lower quefrency (τ) parts represent the 
envelop shape of log-APSD and express vocal tract 
transfer characteristics. Although the size of Cepstrum 
vector is the same as log-APSD, the author uses the 
first 60 components as a feature vector in the present 
study. 
 
2.2 - Dimension reduction for visualization 
The above-mentioned feature vectors could be directly 
used for state classification. However these feature 
vectors have a large dimension, and also, extensive 
information about machine states, it might be effective 
to find essential and low-dimension features from 
them. If two effective features are extracted, each state 
can be visualized in the two-dimensional space. This 
visualization is very important for the anomaly 
monitoring, since it makes easy and instinctive 
understanding of the equipment states. For this 
purpose, PCA and KPCA are utilized. Also, a heuristic 
feature selection method will be presented. 
 
2.2.1 - PCA based classification 
Given M sets of p-dimensional centered observations 
(pre-processed feature vectors), x(m) (m=1,M), PCA 
diagnoses its covariance matrix, 

∑
=

⋅=
M

m

Tmxmx
M

C
1

)()(1 .          (3) 

To do this, the following eigenvalue equation has to be 
solved: 

VCV =λ .               (4) 
Then, m-th observation, x(m), is projected onto the 
k-th eigenvector, V(k), as follows: 

)()( )( mxVmz Tk
k ⋅=            (5) 

Here, zk(m) is the k-th score value in PCA. In the 
present state classification method, appropriately 
selected two score values, zk(m), (k=1,2, m=1,M), are 
used to discriminate the machine state. 
 
2.2.2 - KPCA based classification [6, 7]

KPCA is the extension of PCA to non-linear space and 
is expected to choose more sensitive signal features of 
abnormal state from observations. First, x→Φ(x) is 
assumed to be a possible non-linear mapping. In 

KPCA, it is enough to define just the dot product of 
Φ(x) to compute the projected score values in 
non-linear space. To do this, the covariance matrix in 
non-linear space is defined, instead of Eq. (3), it is as 
follows: 

∑
=

Φ⋅Φ=
M

m

T
mm xx

M
C

1
)()(1          (6) 

The eigenvalue problem is the same as Eq. (4). Here, 
it is noted that the dimension of V becomes M in 
non-linear space. Since all solutions of V lie in the 
span of {Φ(x1)…Φ(xM) }, the following relations are 
satisfied. 
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Here, M-dimensional vector α can be computed by 
solving the following eigenvalue equation: 

αλα KM =           (8) 
The kernel matrix K is defined as follows: 

)()(),( j
T

iji xxxxK Φ⋅Φ=          (9) 

In the present paper, the following Gaussian kernel 
function is used: 

)
2
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Here, α in Eq.(8) has to be normalized so as to satisfy 
the relation, λk(α(k)T・α(k))=1, since the eigenvector, 
V(k), have to satisfy (V(k)T・V(k))=1. After obtaining the 
eigenvector V(k) in the non-linear space, the score 
value can be computed by the dot product of Φ(x) and 
α as follows: 
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)()( xxxVz T
m

M
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k Φ⋅Φ=Φ⋅= ∑

=

α   (11) 

The machine state is classified using appropriately 
selected two score values, zk(m), (k=1,2, m=1,M). 
Although the dimension of eigenvector V in the linear 
PCA should be less than p, the dimension of 
observation vector, the dimension of KPCA 
eigenvector can be extended to the learning data 
number M. This means the KPCA will have to be 
more flexible and require sensitive classification 
capability. 
 
2.2.3 - Heuristic classification 
Since humans can learn speech recognition ability 
without any theories, there is a possibility of finding 
heuristically the good features of vectors for the 
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normal and abnormal state classification. In order to 
find such good features, the positive factors should be 
defined at first. So, it is assumed that a good 
classification index is to maximize the following 
criterion: 

),(),(),(),( jiAAjiNNjiNAji FFDFFDFFDFFC −−=  (12) 

Here, Fi and Fj are the i-th and j-th elements extracted 
from the multi-dimensional feature vector.  
DNA(Fi ,Fj) is the Maharanobis distance between 
normal and abnormal state data defined by: 

)()()(),( ),(),(1),(),(),(),( ji
N

ji
A

ji
N

ji
A

Tji
N

ji
AjiNA FFD μμμμ −Σ+Σ−= −  (13) 

Here, the symbols ‘N’ and ‘A’ mean normal and 
abnormal states respectively. Also, the notations μ  
and  express the average and variance of i-th and 
j-th elements for normal and abnormal states 
respectively. To maximize the above criterion means 
that the abnormal state is allocated away from the 
normal state and each normal or abnormal state is 
allocated near in the two dimensional feature spaces. 

Σ

 
To find the optimum feature indices in Eq. (12), some 
optimization algorithms, such as particle swarm 
optimization (PSO) could be used. However, in the 
present study, the whole possible combinations were 
searched to maximize the criterion, since the 
computational load was not critical in a two 
dimensional parameter space. 
 
2.2 - State discrimination for anomaly monitoring  
2.2.1 - State discrimination by PNN [8]

PNN is defined as a model of a certain state class 
using mixed Gaussian distribution of class members, 
Xij, as follows: 

( )
( )

( ) (
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Here, Xij means the i-th member of score vector which 
belongs to the j-th class. The nj is the number of j-th 
class members and σ is the smoothing parameter.  
The classification can be made by using this 
probability and a certain threshold level ε as 
following: 
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      (15) 

If learning data of K classes exist, it can be 
discriminated whether a target observation belongs to 
one of known K classes or an unknown class. The case 

where the observation doesn’t belong to any known 
classes is important for practical applications. This is 
called as ‘don’t know class’. 
For continuous anomaly monitoring, the following 
monitoring index, MI, which is the log-likelihood of 
PNN can also be used:  

)))((log())(( tXftXMI normal=       (16) 

Here, X(t) is a target feature vector and fnormal(X) is a 
PNN model of the normal state. 
 
2.2.2 - State discrimination by SVDD [9]

SVDD (Support Vector Data Description) is often 
used for the one-class classification problem. In the 
anomaly monitoring system development, just the 
normal data are observed and the abnormal data are 
not usually observed. Hence, the deviation from the 
normal state has to be detected from the information 
of the normal data. SVDD is one of the effective 
methods to obtain the normal class discrimination 
function which can envelop the normal state data in 
the non-linear kernel space. 
 
Assume the globe whose radius is R and center 
position a, then, the minimum size of the globe which 
covers most of the normal data, xi（i=1,N）, is obtained 
so as to minimize the following criterion: 
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Here, the slack variable ξi is introduced to allow 
exceptional data that could be outside of the globe. 
The coefficient C is the trade-off parameter to control 
the degree of allowance. In order to solve Eq. (17), the 
dual problem is introduced as following: 
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Then, the solutions αi (i=1,N) can be solved by the 
standard quadratic problem algorithm. Among N 
solutions, the sample vector xi which corresponds to 
0<αi<C is located on the boundary of the globe and 
called as the support vector. Also, one which 
corresponds to αi=0 is located inside the globe and 
belongs to the normal class. One which corresponds to 
αi=C is located outside the globe. Since the above 
quadratic problem is defined by inner products of the 
sample vectors, the problem can be directly converted 
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into the kernel space as by the following: 
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Here, the kernel function is defined by Eq. (10), for 
example. Based on the obtained coefficients, the 
discrimination function is calculated as follows: 

)()()()(
,

2 xxKxxKxxKRxf
i

ii
ji

jiji ⋅−⋅+⋅−= ∑∑ ααα  (20) 

The plus value of Eq. (20) means the sample x belongs 
to the normal class. 
3 - Test results 
3.1 - Test facility and measurement 
In order to verify the above mentioned algorithms, the 
acoustic data were measured using the rolling bearing 
type test facility shown in Fig. 1. This machine can be 
operated under several conditions of simulated defects, 
such as inner and outer race defects (Large, Middle, 
Small) or ball defects by changing bearing elements, 
in addition to normal condition’s operation [4]. An 
example of defects is shown in Fig.1. The 
measurement was made using handy type microphone 
with digital sampling of 44.1kHz and 10 sec length. 
The data were measured under different rotating 
speeds, 3000, 2000, 1500, 1000 and 500 rpm. 
 

   
 

Fig.1 Mockup facility of rolling bearing and simulated failures 
(Outer and Inner race defects) 

 

 
Fig.2 log-APSD of acoustic sound for Normal and Inner race 

defect (Large) condition 

 

The examples of auto-power spectral density (APSD) 
of measured anomaly data are shown in Fig. 2. Here, 
the abnormal data of inner race large defect are 
compared with the normal data under the 3000 rpm 
rotating speed. It is seen that the typical resonance 
frequencies are observed at the 50Hz fundamental 
mode and its higher oscillation modes. Also, it is 
noted that differences between the normal and 
anomaly state are not so large. When vibration data 
are measured using the attached type accelerometer, 
these differences become clear. However, in the case 
of the remotely measured acoustic data shown here, 
the differences become very small. This means that 
signal processing techniques are important for 
amplifying the small signal features to distinguish 
anomaly states. 
 
3.2 - Evaluation of classification performance of 
PCA, KPCA and a heuristic method 
The purpose of the present classification is to 
discriminate the abnormal state based on the normal 
feature vector database. In order to evaluate the 
classification performance, the normal state database 
labeled by NN3000 and NN2000 and the abnormal 
state data labeled by InL3000 and InL2000 are used. 
Here, numeric labels mean the machine rotating speed 
in the rpm unit. Hence, the 3000 and 2000 rpm 
conditions have 50Hz and 33Hz fundamental 
oscillation modes respectively. The label InL means 
the inner race large defect abnormal state. The reason 
why two different operating speed data are included is 
to evaluate the robustness of classification 
performance to the operating condition change. The 
appearance of normal state feature vector patterns is 
different from not only abnormal patterns, but also 
different operating speed normal patterns. The skilled 
human engineers can discriminate the abnormal state 
even though the target machine is operated in different 
speeds. This situation is similar to the human ability of 
speaker recognition [10]. It can be easily recognized 
who speaks, even if they speak different words.  
Hence, the author tried to discriminate the abnormal 
states from normal ones, while the target machine was 
operated in different speeds. 
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The feature vectors of the above-mentioned four kinds 
of state data are evaluated by the afore-mentioned 
three algorithms for every 0.2 second length sound 
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waveform with 44.1kHz sampling, which include 
8820 points digital data. Since the measured data 
length was 10 seconds, each state has 50 samples of 
feature vectors. 
 
In the present analysis, the dimension of feature vector 
is 512 in log-APSD, 30 in Melscale-APSD, or, 60 in 
Cepstrum. These large-dimension data are projected 
into the two-dimension space by PCA, KPCA, or, the 
heuristic method, in order to visualize each state 
feature. 
 
The classification results by log-APSD using PCA and 
KPCA are shown in Fig. 3. Here, the principal 
components are evaluated only from the normal state 
data, NN3000 and NN2000. And the score values of 
the 1st and 2nd principal components are plotted. It is 
shown that the discrimination of normal and abnormal 
state is difficult in the case of PCA, but, is easy in the 
case of KPCA. Similar conclusions are obtained in Fig. 
4, where the results of Mel-scale-APSD are shown. 
 
On the other hands, the results of Cepstrum in Fig. 5 
are a little bit different from other feature extraction 
cases. In this case, the plots of 1st and 3rd principal 
components were shown. Here, both PCA and KPCA 
are able to discriminate the abnormal states from the 
normal ones. Furthermore, the differences of operation 
condition are less noticeable. This suggests that the 
Cepstrum and KPCA provide the most robust 
capability, and, almost the same sensitivity to other 
methods, for the rotating machine acoustic monitoring. 
From practical viewpoints, this robustness would be 
very important characteristics. 
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In Fig. 6, two examples of heuristic classification 
results are shown, where two frequency’s amplitudes 
of log-APSD are chosen for the plot. In the left figure, 
the frequencies, 50Hz and 301Hz were chosen to 
represent the normal and abnormal states. The author 
assumed that these frequencies represented 
fundamental and higher modes of rotation which were 
excited by the inner race defect. However, the 
classification results are not so good. Hence, the 
optimum frequencies are searched based on Eq. (12). 
As a result, it can be found the frequency combination 
of 301Hz and 1.2kHz can maximize Eq. (12). The 
results are shown in Fig. 6(b). Here, it is shown that 

the good discrimination of normal and abnormal states 
is attained. This result suggests that the high 
frequency impact sound from inner race defect and 
rolling balls would be also characteristic features for 
anomaly monitoring in addition to the higher mode 
oscillation amplitude.  
 
As a summary, the classification capability is 
evaluated by the Maharanobis distance defined by Eq. 
(13), and, shown in Table 1. Here, the larger DNA and 
smaller DNN or DAA values are preferred for the good 
classification. The qualitative evaluations are also 
shown in this table. These results show that the 
classification performance largely depends on the 
feature extraction algorithm. Among them, Cepstrum 
and KPCA provide the good performance for robust 
and sensitive classification. Furthermore, it is seen 
that the heuristic method has a good possibility for not 
only the classification capability but also the 
knowledge discovery for anomaly condition 
monitoring. 
 

 
(a) PCA 

 
(b) KPCA 

 
Fig.3 State classification by PCA and KPCA based on 

log-APSD 
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(a) PCA 
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(b) KPCA 

 
Fig.4 State classification by PCA and KPCA based on 

Mel-scale-APSD 
 

 
(a) PCA 
 

 
(b) KPCA 

 
Fig.5 State classification by PCA and KPCA based on 

Cepstrum 
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(b) KPCA 

 
Fig.6 State classification by heuristic method of 

log-APSD 
 

Table 1 Evaluation summary of classification 

X-
axis

Y-
axis

DNA DNN DAA

1 2 2.38 164.37 10.02 ×

1 2 3.21 210.27 1.03 ×

1 2 61.61 116.95 0.39 △

1 3 58.9 4.34 4.28 ○

PCA 1 2 3.65 694.5 76.14 ×

KPCA 1 2 10.6 439.88 29.07 △

1 2 7.27 378.1 21.01 △

1 3 6.69 261.23 26.08 △

1 2 76.76 9.19 3.61 ◎

1 3 75.83 0.36 1.39 ◎

log-APSD Heuristics
12274

Hz
301Hz 104.88 7.27 2.7 ◎

Mel-scale-
APSD

Heuristics
13602

Hz
413Hz 109.54 21.13 2.73 ◎

Cepstrum Heuristics
18que
frency

3quefr
ency

98.65 2.41 5.77 ◎

Components Maharanobis Distance
Evaluation

log-APSD

Feature
Extraction

Classification

Mel-scale-
APSD

Cepstrum

PCA

KPCA

PCA

KPCA

 
 
3.3 - Discrimination results by PNN and SVDD 
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In order to demonstrate the discrimination 
performance of PNN and SVDD, another experiment 
results are shown [11]. Here, five different motor speed 
data were measured at normal and abnormal (inner 
race defects) conditions. In each condition, 30 sets of 
acoustic data were measured and analyzed. Among 10 
cases of test conditions, the following three condition 
data sets are chosen as the learning data sets to 
calculate the normal class discrimination function 
defined by Eqs. (14) and (20), and then, the 
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discrimination performance is evaluated using the 
remaining seven data sets including normal and 
abnormal condition data.  
(1) Leaning data sets (Normal): NN1435,1209,1004 
(2) Test data sets (Normal): NN1301,1107 
(3) Test data sets (Abnormal): 

 InL1435,1301,1209,1107,1004 
Figures 7 and 8 are the results of normal class 
discrimination function by the contour curves and 3D 
shape plots. Here, the 2nd and 4th PCA components of 
Cepstrum are chosen as the feature parameters. Also, 
the test data sets of normal and abnormal class are 
shown by circle and cross symbols. In the case of 
SVDD, the shape of contour curve is determined by 
the support vectors on the boundary of the normal 
class. On the other hand, the shape of PNN contour 
curve is determined by all normal class vectors and 
has the smooth shape. 
 
In order to discriminate the normal class, the threshold 
is set to the middle value of minimum of the normal 
class and maximum of the abnormal class as follows: 

2/)}(max)({min AbnormalNormal xfxf +=ε .  (21) 

Then, in the case of SVDD, all of the 150 samples of 
normal states are classified as the normal class. And 
furthermore, no abnormal state samples are classified 
into the normal class. This means the false and miss 
alarms were zero. On the other hand, in the case of 
PNN, 2 false alarms and 6 miss alarms were observed. 
This means SVDD is superior to PNN for detecting 
small anomaly. 
 

 
 

Fig. 7 Classification by PNN using Cepstrum and 2nd and 4th 
PCA components 

 

 
 

Fig. 8 Classification by SVDD using Cepstrum and 2nd and 4th 
PCA components 

 

4 - Conclusions 
Various kinds of signal processing methods have been 
discussed for condition monitoring of rotating 
machines, using remotely measured acoustic signals. 
Although the remotely measured sound has 
advantages for condition monitoring, their monitoring 
accuracy is less than the attached type sensors. To fill 
the lack of sensitivity, several kinds of advanced 
statistical signal processing methods were introduced 
such as PCA, KPCA, PNN and SVDD, in addition to 
the heuristic knowledge discovery method. Also it was 
shown the introduction of these signal processing 
methods contributed to the improvement of both 
sensitivity and robustness for condition monitoring.  
In Japan, a new maintenance regulation rule has just 
been introduced where condition monitoring 
technologies will be expected to have a more 
important role, for this reason in the future, 
perspective new technologies for condition monitoring 
should be pursued more. 
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