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Abstract: An adaptive genetic-simplex algorithm for parameter optimization in nuclear power plant is 

proposed by using adaptive crossover and mutation techniques and integrating genetic algorithm with simplex 

algorithm. The modified algorithm enables the handing of nonlinear constrained optimization problem because 

of dramatically improved search capability. Performance comparison between the proposed algorithm and 

original ones is performed by solving the optimization test problem. To implement parameter optimization in 

nuclear power plant, the mathematical models of electric heating pressurizer and natural circulation steam 

generator are established. Finally, by using the modified algorithm, the optimization of steam generator and 

pressurizer aiming at minimizing weight and volume is implemented respectively. It has been found that the 

modified algorithm finds global optimal solution effectively in all algorithm tests while the original algorithms 

only make it in some of the tests. For parameter optimization, the weight and volume of steam generator 

decreases by 18.56% and 18.39% respectively, and the decrements are 16.54% and 18.97% for that of 

pressurizer. It is demonstrated that the adaptive genetic-simplex algorithm is capable of dealing with the 

optimization of nuclear power components. The optimization in this study may provide effective guide for 

engineering design. 
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1 Introduction
1
 

Optimization methodology has been widely applied 

to the design of nuclear power plant, such as core 

design
[1][2]

, fuel loading and management
[3][4]

, 

system surveillance tests
[5]

, etc. In recent years, the 

capacity of new designed nuclear power units has 

reached a high level (i.e., 1750MW for EPR unit), 

which enlarges the size of nuclear power 

components. This is a concern not only because of 

difficult in manufacture, transportation and layout 

of large equipment but also because of increasing 

cost. The situation makes the researchers use 

optimization methodology to control or decrease 

the size and weight of nuclear power components. 

LIU et al. 
[6]

 minimized the weight and volume of a 

condenser using a modified genetic algorithm, and 

the reduction of the weight and volume was 6.926% 

and 12.587%. By using a complex algorithm to 

determine optimal set-points of primary loop 

pressure, inlet and outlet temp erature of core, 

U-tube outer diameter, tube pitch and coolant flow 

velocity, QIN
[7]

 et al. minimize the weight of a 

steam generator(SG), and 17.16% off was achieved. 
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LIU
[8]

 et al. minimized the weight of a pressurizer 

by redesigning the system pressure, inlet and outlet 

temperatures of the core, inner diameter of the 

pressurizer, and the optimized volume was 15.3% 

of the original design. 

 

Parameter optimization of nuclear power 

components is an approach that determines an 

optimal set of design parameters to 

minimize/maximize the objective in the presence of 

thermal-hydraulic and safety restrictions, which 

belongs to complex nonlinear constrained 

optimization problem. In order to solve the problem 

effectively, an optimization algorithm with strong 

search capability is indispensable. Simple genetic 

algorithm (SGA) is intuitionistic and easy to 

operate, but its convergence rate is slow and 

premature convergence often appears. 

 

Using f inite homogeneous Markov chain theory, 

Rudolph[9] proved SGA can’t ensure that optimization 

converges to the global optimum. Srinvivas [10] et al. 

developed an adaptive technique that adapts the 

crossover probability and mutation probability 

according to individual fitness, group maximum 
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fitness and average fitness. It ensures the group 

diversity and has been used in many studies[11][12]. 

Simplex algorithm (SA) is widely used in nonlinear 

function optimization because no differential is 

needed. It has strong search ability in local region but 

the global search ability is limited[13].  

 

In fact the algorithm can’t promise an optimal design 

if the search ability isn’t strong enough. Hence, 

adaptive genetic-simplex algorithm (AGSA) is 

proposed in this work. The AGSA takes advantage of 

different algorithms by integrating adaptive 

techniques, genetic algorithm and simplex algorithm, 

which extremely enhances algorithm’s search ability. 

The works conducted by QIN[7] et al. and LIU[8] et al. 

only concentrated on weight minimization, in this 

work component volume is also taken into account. 

 

The paper is structured as follows, Section 2 presents 

the adaptive genetic-simplex algorithm and algorithm 

tests are also conducted. Section 3 presents the 

mathematical models of steam generator and 

pressurizer and the validation of the models is also 

presented. Section 4 presents the optimization of 

steam generator and pressurizer and the results are 

analyzed. Finally, concluding remarks and a 

discussion of future work are provided in section 5. 

 

Nomenclature 

Variables 𝜌3   density of SG U-tube, kg/m3 

𝐷𝑙𝑕𝑜 outer diameter of SG lower head, m 𝐶0 coefficient decided by SG critical heat load  

𝐷𝑙𝑕𝑖 inner diameter of SG lower head, m 𝜐′ specific volume of SG saturation steam, m3/kg 

𝐷𝑙 inner diameter of SG lower shell, m 𝜐″ specific volume of SG saturation water, m3/kg 

𝐷𝑢 inner diameter of SG upper shell, m 𝜍 ′ surface tension of SG saturation water, N/m 

𝐷𝑡𝑠 diameter of SG tube sheet, m 𝜇′ viscosity coefficient of SG saturation water, Pa•s 

𝑑 diameter of tube hole on the tube sheet, m 𝐷𝑝𝑖 inner diameter of pressurizer, m 

𝑑𝑜 outer diameter of U-tube, m 𝑕𝑠𝑝 height of pressurizer shell, m 

𝑑𝑖 inner diameter of U-tube, m 𝑕𝑢𝑝 height of pressurizer upper head, m 

𝐻𝑢 height of SG upper shell, m 𝑕𝑙𝑝 height of pressurizer lower head, m 

𝐻𝑙 height of SG lower shell, m 𝑕𝑠𝑡 straight flange height of pressurizer head, m 

𝐿 length of U-tube, m 𝑡𝑢𝑝 thickness of pressurizer upper head, m 

𝑁 number of U-tube 𝑡𝑙𝑝 thickness of pressurizer lower head, m 

𝑡𝑡𝑠 thickness of tube sheet, m 𝑡𝑠𝑝 thickness of pressurizer shell, m 

𝑡𝑢 thickness of SG upper shell, m 𝑆 allowable stress of pressurizer material, MPa 

𝑡𝑙 thickness of SG lower shell, m 𝐸 lowest efficiency of any joint in pressurizer head 

𝑡𝑢𝑕 thickness of SG upper head, m 𝑐 , 𝑐 , 𝑐3 additional thickness of pressurizer material, m 

𝐿 liquid level meter range, m 𝜌  the density of pressurizer materials, m3/kg 

𝜌    density of SG shell, kg/m3 𝑊  weight of one electric heater in pressurizer, kg 

𝜌    density of SG tube sheet, kg/m3 𝑁  the number of electric heater in pressurizer 

 

2 Adaptive genetic-simplex algorithm 

Genetic algorithm searches the optimal solution by 

simulating the biological evolution of Darwin 

Evolution Theory. Every individual in the evolution 

group represents a solution. The key operations are 

crossover, mutation and selection. By implementing 

these operations cyclically, good solutions are 

generated and protected and thus the group 

approximate to the optimal solution little by little. 

 

Simplex algorithm is a deterministic search method 

based on geometry polyhedron. A N-dimensional 

convex polyhedron called simplex transforms its shape 

continuously in N-dimensional search space using 

reflection, expansion, contraction and reconstruction 

operation. Every vertex of the simplex represents a 

solution and thus the search space represents the 

solution space. By implementing the search, the 

inferior solutions are replaced by new ones and the 

simplex approximates to the optimal solution 

gradually. 

 

2.1 Adaptive techniques 

In genetic algorithm, crossover probability 𝑃𝑐 and 

mutation probability  𝑃𝑚 is manually set as fixed value.  

The two parameters have signif icant effect on 



WANG Cheng, YAN Chang-qi, and WANG Jian-jun 

66 Nuclear Safety and Simulation, Vol. 7, Number 1, July 2016  

algorithm's performance, such as search ability and 

convergence rate. Crossover probability determines 

the generation rate of new individuals. The larger the 

crossover probability is, the faster the generation of 

new individuals is. Too large a crossover probability 

may destroy good individual structure, while too 

small a crossover probability may slow down the 

search process and lead to prematurity. Mutation 

probability is the key factor to help algorithm jump 

out of local optimum. An excessively small mutation 

probability makes it difficult to generate new 

individual structures, but the GA will become a 

random search algorithm if the mutation probability is 

too large. In the evolution (search process) we hope 

that the good individual structures be protected and 

the bad individual structures be replaced by new ones. 

Obviously it’s impossible if all the individuals are 

assigned with same crossover and mutation 

probability, because all the individuals have the same 

probability to be inherited/replaced. To overcome the 

defects, Srinvivas proposes an adaptive genetic 

algorithm that adaptively adjusts the crossover and 

mutation probability according to individual fitness 

(Fitness measures the individual quality). The 

adaptive crossover and mutation probability is 

calculated by formula (1) and formula (2). 

𝑃𝑐 = {
𝑃𝑐 −

(𝑃𝑐 − 𝑃𝑐 )(𝑓
′ − 𝑓𝑎𝑣𝑔)

𝑓𝑚𝑎𝑥− 𝑓𝑎𝑣𝑔
,    𝑓 ′ ≥ 𝑓𝑎𝑣𝑔

𝑃𝑐 ,                                                    𝑓
′ < 𝑓𝑎𝑣𝑔

                (1) 

𝑃𝑚 = {
𝑃𝑚 −

(𝑃𝑚 − 𝑃𝑚 )(𝑓 −𝑓𝑎𝑣𝑔)

𝑓𝑚𝑎𝑥− 𝑓𝑎𝑣𝑔
,   𝑓 ≥ 𝑓𝑎𝑣𝑔

𝑃𝑚 ,                                                    𝑓 < 𝑓𝑎𝑣𝑔

               (2) 

Where 𝑓𝑚𝑎𝑥  is the largest fitness value in group, 𝑓𝑎𝑣𝑔  

is the average fitness value of group, 𝑓′  is the larger 

fitness value of the two crossover individuals, 𝑓 is 

the fitness value of the mutation individual, 𝑃𝑐  is the 

maximum of crossover probability, 𝑃𝑐  is the 

minimum of crossover probability, 𝑃𝑚  is the 

maximum of mutation probability, 𝑃𝑚  is the 

minimum of mutation probability. Crossover 

probability generally ranges from 0.4 to 0.9, mutation 

probability generally ranges from 0.001 to 0.1. 

 

The individual whose fitness is larger than the average 

value will be automatically assigned with small 

crossover and mutation probability to protect its 

individual structure. And the individual whose fitness 

is smaller than the average value would be distributed 

with large crossover and mutation probability so as to 

eliminate the poor individual structure. The adaptive 

crossover and mutation probability techniques can not 

only maintain the group diversity but also ensure the 

convergence of algorithm, which can effectively 

improve the algorithm’s search ability. 

 

2.2 Algorithms integration 

GA is a heuristic and global optimization algorithm 

while SA is a deterministic and local one. They are 

complementary in search capacity: GA has strong 

global search ability but weak local search ability, SA, 

in contrast, has strong local search ability but weak 

global search ability. The proposed AGSA integrates 

GA, SA and adaptive techniques. The algorithm 

process is specified in Fig.1. It enhances search 

capacity by complementary mechanism. In initial and 

middle stage of search, AGSA has strong global search 

ability by performing genetic operations, which 

enables the group evolve in large range to find out the 

neighborhood space of global optimum. In late stage of 

search, simplex operations bring AGSA strong local 

search ability, which enables the group evolve in small 

range to find out the global optimum. Adaptive 

crossover and mutation probability are introduced in 

genetic operation to further improve AGSA’s global 

search ability at initial and middle stage. 

 
Start

Initialize optimalization parameters: group size 

N, maximum cycles T, crossover probability Pc, 

mutation probability Pm , simplex vertex number 

K, cycle t = 0

Generate initial feasible group

Perform crosover, mutation and selection 

operations to generate new group

Evaluate the new group, t = t +1

Randomly assign the group into T/K simplexs

Perform simplex operations to generate new group 

Evaluate the new group, t = t +1

t = T ?

Output global optimal solution

Stop

Adaptively adjust the crossover and mutation 

probability according to individual fitness

t > 0.8T ?
No

Yes

No

Yes

 

Fig.1 Flow chart of GSA. 
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2.3 Algorithms test 

Two representative standard test problems proposed by 

Runarsson T. P. et al. for optimization algorithm are 

cited in this work[14]. They are nonlinear optimization 

problems with complex constraints, which can 

effectively determine algorithm’s performance. The 

details of the test functions are given by formula (3) 

and (4). 

Standard test function g06: 

{

min𝑓(𝐗) = (𝑥 − 10)3+ (𝑥 − 20)3,             

 𝑔 (𝐗) = −(𝑥 − 5) −(𝑥 −5) + 100≤ 0,

 𝑔 (𝐗) = (𝑥 − 6) +(𝑥 − 5) − 82.81 ≤ 0.

                     (3) 

 Standard test function g09: 

{
  
 

 
 
 

min𝑓(𝐗) = (𝑥 − 10) + 5(𝑥 −12) +𝑥3
4 + 10𝑥5

6

+3(𝑥4 −11) +7𝑥6
 +𝑥7

4 + 4𝑥6𝑥7 − 10𝑥6− 8𝑥7,

 𝑔 (𝐗) = −127 +2𝑥 
 +3𝑥 

4 + 𝑥3+4𝑥4
 + 5𝑥5 ≤ 0,      

 𝑔 (𝐗) = −282+ 7𝑥 +3𝑥 +10𝑥3
 + 𝑥4 − 𝑥5 ≤ 0,       

 𝑔3(𝐗) = −196 + 23𝑥 + 𝑥 
 +6𝑥6

 −8𝑥7 ≤ 0,               

 𝑔4(𝐗) = 4𝑥 
 +𝑥 

 − 𝑥 𝑥 +2𝑥3
 + 5𝑥6 −11𝑥7 ≤ 0.

 (4) 

For g06: 13 ≤ 𝑥 ≤ 100  and  0 ≤ 𝑥 ≤ 100 .The 

optimum solution is 𝐗 = (14.095,0.84296), 𝑓(𝐗) =

−6961.81388. Both inequality constraints are active 

and its feasibility ratio is only 0.0057%. For 

g09: −10 ≤ 𝑥𝑖 ≤ 10 , where  𝑖 =  1, . . . , 7 . The 

optimum solution is 𝐗 =  (2.330499, 1.951372,

−0.4775414, 4.365726, −0.6244870, 1.038131,

1.594227), where 𝑓(𝐗) = 680.6300573 . Two 

inequality constraints are active (g1 and g4) and its 

feasibility ratio is 0.5199%. Both g06 and g09 are 

multimodal function. Problem g09 has higher 

complexity because it has more variables and 

inequality constraints, though its feasibility ratio is 

much larger than that of g06. 

 

The tests of the AGSA, GA and SA are carried out by 

optimization experiments of problem g06 and g09. 

The involved algorithm parameters are listed as 

follows: for all algorithms, group size 𝑁 = 120 , 

maximum cycle𝑇 = 200 . For AGSA,𝑃𝑐 = 0.9,𝑃𝑐 =

0.4, 𝑃𝑚 = 0.1, 𝑃𝑚 = 0.001. For GA,𝑃𝑐 = 0.6,𝑃𝑚 =

0.01. For SA, K is 3 for g06 and 8 for g09. 

 

Figure 2 and 3 present the performance comparison of 

the AGSA, GA and SA for g06 and g09 problem. In 

the experiment of g06 problem, AGSA found global 

optimum at 87th cycle and GA made it at 188th cycle, 

while SA was not able to found the global optimal 

solution. In the experiment of g09 problem, AGSA 

found the global optimum at 191th cycle, while both 

GA and SA fell into local optimums. In the 

optimization experiments of nonlinear constrained 

problems, AGSA performed significantly better than 

GA and SA. Even though GA found the global 

optimum of g06 problem, it achieved the goal at the 

late stage of search, which was much inefficient when 

compared with AGSA. 

 

 

Fig.2 Experimental results for problem g06. 

 

 

Fig.3 Experimental results for problem g09. 

 

3 Mathematical models 

In this section mathematical models of vertical 

natural-circulation steam generator and vertical 

electric-heating pressurizer are presented for 

determining the weight and volume of the equipment 

according to input parameters. 

 

3.1 Mathematical model of steam generator 

The vertical natural-circulation steam generator used in 

NPP provides means of transferring heat from the 

primary loop to the secondary loop. As shown in Fig.4, 

coolant of primary loop enters the steam generator inlet 

chamber via inlet nozzle, flows up through the tube 

sheet and U-bend tube, where the heat is transferred to 

the working fluid of secondary loop, then the coolant 

returns through the tube sheet to the steam generator 

outlet chamber and exits via outlet nozzle. In 

secondary loop section, the feedwater enters steam 
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generator via the feedwater nozzle, mixes with the 

water removed by the moisture separators, and flows 

into the evaporation region (tube bundle region) 

through an annular downcomer formed by the pressure 

shell and tube wrapper. In the evaporation region, the 

feedwater is heated and boil happens, the steam-water 

mixture flows up through the moisture separator and 

steam dryer, where the steam is separated and flows out 

via the steam outlet nozzle. 

 
Fig.4 structure diagram of vertical natural circulation SG. 

 

The mathematical model of vertical natural-circulation 

steam generator includes preliminary design and 

weight and volume calculation. Figure 5 presents the 

whole procedure of the model. 

 
Start

Input design variables

Evaluate weight and volume 

Stop

CR´=CR

|CR－CR´|＜ε
No

Yes

Thermal equilibrium calculation

Thermal design

Structural design

Hydrualic design

Initialize circulation ratio CR

Calculate circulation ratio CR´

Mechanical design

 
Fig.5 Flow chart of SG mathematical model. 

 

3.1.2 Weight and volume calculation 

1. Weight calculation 

The steam generator mainly consists of lower head, 

tube sheet, tube bundle, lower shell, conical shell, 

upper shell, upper head, moisture separator and 

accessories. The formulas for weight and volume of 

these components are given as below. 

The weight of lower head 

𝑊 =
𝜋

12
(𝐷𝑙𝑕𝑜

3 −𝐷𝑙𝑕𝑖
3)𝜌                                                          (5) 

The weight of tube sheet 

𝑊 =
𝜋

4
(𝐷𝑡𝑠

 − 2𝑁𝑑 )𝑡𝑡𝑠𝜌                                                       (6) 

The weight of tube bundle 

𝑊3 =
𝜋

4
(𝑑𝑜

 
− 𝑑𝑖

 
)𝐿𝜌3                                                               (7) 

The weight of lower shell 

𝑊4 =
𝜋

4
[(𝐷𝑙 + 2𝑡𝑙)

 − 𝐷𝑙
 ]𝐻𝑙𝜌                                               (8) 

The weight of conical shell 

𝑊5 =  
𝜋

24
cot 𝛼 [(𝐷𝑢 +2𝑡𝑢)

3 −(𝐷𝑙 + 2𝑡𝑙)
3 − 𝐷𝑢

3

+ 𝐷𝑙
3]𝜌                                                       (9) 

The weight of upper head 

𝑊7 =
𝜋

24
{(𝐷𝑢+ 2𝑡𝑢𝑕)

3 −𝐷𝑢
3

+ 6[(𝐷𝑢 +2𝑡𝑢𝑕)
 − 𝐷𝑢

 ]𝑕}𝜌             (10) 

The weight of moisture separator can be estimated 

using formula proposed in Ref. [9]. 

𝑊8 = 𝐶𝑜𝐵𝑀𝑔𝐶𝑅√
𝜐″

𝜍 ′ √𝜇
′𝜐′3                                                        (11) 

The weight of upper shell 

𝑊6 =
𝜋

4
[(𝐷𝑢 + 2𝑡𝑢)

 − 𝐷𝑢
 ]𝐻𝑢𝜌                                         (12) 

The total weight of steam generator 
𝑊𝑆𝐺 =   𝑊 + 𝑊 + 𝑊3 +𝑊5                                                          

+ 𝑊6 +𝑊7 +𝑊8 +𝑊9                         (13) 

Where 𝑊9  is the weight of accessories. 

 

2. Volume calculation 

The volume of lower head 

𝑉 =
𝜋

12
𝐷𝑙𝑕𝑜

3                                                                              (14) 

The volume of lower shell 

𝑉 =
𝜋

4
(𝐷𝑙 +2𝑡𝑙)

 𝐻𝑙                                                                  (15) 

The volume of conical shell 

𝑉3 =
𝜋

24
cot 𝛼 ,(𝐷𝑢+ 2𝑡𝑢)

3− (𝐷𝑙 + 2𝑡𝑙)
3-                        (16) 

The volume of upper shell 

𝑉4 =
𝜋

4
(𝐷𝑢 + 2𝑡𝑢)

 𝐻𝑢                                                               (17) 

The volume of upper head 

𝑉5 =
𝜋

24
,(𝐷𝑢 + 2𝑡𝑢𝑕)

3 +6(𝐷𝑢+ 2𝑡𝑢𝑕)
 𝑕-                        (18) 
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The total weight of steam generator 
𝑉𝑆𝐺 = 𝑉 +𝑉 + 𝑉3 + 𝑉4 + 𝑉5                                                  (19) 

 

3.1.3 Model validation 

Table 1 presents the comparison between the model 

evaluation results and actual parameter values of 

Qinshan I steam generator
[15]

. One can see that the 

evaluation results are reasonably accurate as all the 

relative errors are within 4% when compared with 

actual values, which means the mathematical model 

can be applied for optimization design. 

 
Table 1 Model evaluation results of Qinshan I SG 

Parameters 
Actual  
value 

Evaluate  
value 

Error  
(%) 

U-tube number 
2975 2975 0 

Heat transfer area/m2 
3072.9 3067.31 -0.18 

U-tube height/m 
8.282 8.322 0.48 

SG height/m 17.278 17.196 -0.47 

SG volume/m3 151.24 154.77 2.33 

SG weight/t 208.6 206.32 -1.09 

 

3.2 Mathematical model of pressurizer 

The vertical electric-heating pressurizer in NPP plays a 

key role in controlling and stabilizing the pressure of 

primary loop. The mathematical model of pressurizer 

includes volume des ign, mechanical design, and 

weight and volume calculation. The volume design 

determines the volume of different parts; the 

mechanical design gives the dimensions of pressurizer 

and material thickness. Based on the pressurizer 

dimensions and material density, the pressurizer 

weight and volume are derived finally. 

 

TV

LV

NV

,minfV

s,minV

Phsph

ush

lsh

msh

uph

lph

 
Fig.6 Volume constituent and dimension of pressurizer. 

 

 

 

3.2.1 Volume design 

Pressurizer volume design follows strict design 

criterion so as to fulfill pressure control requirement of 

primary loop under all working conditions. Transient 

analys is of pressurizer typical operation modes is 

indispensable in volume design. As shown in Fig. 6, 

the pressurizer volume is divided into steady-state 

minimum steam volume  𝑉𝑠,𝑚𝑖𝑛 , steady-state 

liquid-level change volume  𝑉𝑙 ,𝑐  and steady-state 

minimum water volume 𝑉𝑤 ,𝑚𝑖𝑛 . The steady-state 

liquid-level change volume consists of three parts: 

steady-state power change volume  𝑉Δ𝑁 , liquid level 

meter deviation volume  𝑉Δ𝐿 , volume of temperature 

measurement deviation and control dead zone 𝑉Δ𝑇 . For 

transient analysis and volume derivation see Refs. [16] 

[17]. 
 

3.2.2 Mechanical design 

For mechanical design, the inner diameter of 

pressurizer 𝐷𝑝𝑖  is taken as design variable. As the 

upper and lower head are standard ellipsoidal shape, 

the heights presented in Fig.6 can be derived directly. 

𝑕𝑢𝑠= .𝑉𝑠.𝑚𝑖𝑛 −
𝜋

24
𝐷 𝑖

3/ .
𝜋

4
𝐷 𝑖

 /                                      (20)⁄  

𝑕𝑙𝑠 = .𝑉𝑤.𝑚𝑖𝑛 −
𝜋

24
𝐷 𝑖

3/ .
𝜋

4
𝐷 𝑖

 /                                     (21)⁄  

𝑕𝑚𝑠= (𝑉Δ𝑁+ 𝑉Δ𝐿 + 𝑉Δ𝑇) .
𝜋

4
𝐷 𝑖

 /                                     (22)⁄  

𝑕𝑠𝑝 = 𝑕𝑢𝑠+ 𝑕𝑙𝑠+ 𝑕𝑚𝑠                                                               (23) 

𝑕𝑢𝑝 = 𝑕𝑙𝑝 = 𝐷 𝑖 4 + 𝑕𝑠𝑡                                                           (24)⁄  

𝑕 = 𝑕𝑠𝑝 + 𝑕𝑢𝑝+𝑕𝑙𝑝                                                                (25) 

The material thickness of pressurizer is calculated 

according to the norms of ASME boiler and Pressure 

Vessel Code. 

Thickness of upper head 

𝑡𝑢𝑝 =
𝑃 𝐷 𝑖

2𝑆𝐸 −0.2𝑃 
+ 𝑐                                                             (26) 

Thickness of lower head 

𝑡𝑙𝑝 =
𝑃 𝐷 𝑖

2𝑆𝐸 − 0.2𝑃 
+𝑐                                                             (27) 

Thickness of cylindrical shell 

𝑡𝑠𝑝 =
0.5𝑃 𝐷 𝑖

2𝑆𝐸 −0.6𝑃 
+ 𝑐3                                                           (28) 

 

3.2.3 Weight and volume calculation 

The pressurizer consists of upper and lower head, 

cylindrical shell, electric heater and accessories (e.g. 

spray lines, foundation support and manhole cover). 

The formulas for weight and volume of these 
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components are listed as below. 

 

1. Weight calculation 

The weight of upper head 

𝑊𝑢𝑕 =  
𝜋

24
*(𝐷𝑃𝑖 + 2𝑡𝑢𝑝)

3
− 𝐷𝑃𝑖

3 +

           60(𝐷𝑃𝑖 + 2𝑡𝑢𝑝)
2
− 𝐷𝑃𝑖

21𝑕𝑠𝑡+𝜌𝑃

                                (29) 

The weight of lower head 

𝑊𝑙𝑕 =  
𝜋

24
*(𝐷𝑃𝑖 + 2𝑡𝑙𝑝)

3
− 𝐷𝑃𝑖

3+

           60(𝐷𝑃𝑖 + 2𝑡𝑙𝑝)
2
− 𝐷𝑃𝑖

21𝑕𝑠𝑡 +𝜌𝑃

                                (30) 

The weight of cylindrical shell 

𝑊𝑠 =
𝜋

4
0(𝐷 𝑖 +2𝑡𝑠𝑝)

 
− 𝐷 𝑖

 1 𝑕𝑠𝑝𝜌                                  (31) 

The weight of electric heating elements 
𝑊𝑕 = 𝑊 𝑁                                                                                 (32) 

The total weight of pressurizer 

𝑊 = 𝑊𝑢𝑕+𝑊𝑙𝑕 +𝑊𝑠 +𝑊𝑕+𝑊𝑎                                     (33) 

Where 𝑊𝑎  is the weight of accessories. 
 

2. Volume calculation 

The volume of upper head 

𝑉𝑢𝑕 = 
𝜋

24
(𝐷 𝑖 + 2𝑡𝑢𝑝)

3
+ 

𝜋

4
(𝐷 𝑖 +2𝑡𝑢𝑝)

 
𝑕𝑠𝑡                (34) 

The volume of lower head 

𝑉𝑙𝑕 =  
𝜋

24
(𝐷 𝑖 +2𝑡𝑙𝑝)

3
+ 

𝜋

4
(𝐷 𝑖 +2𝑡𝑙𝑝)

 
𝑕𝑠𝑡                 (35) 

The volume of cylindrical shell 

𝑉𝑠 =
𝜋

4
(𝐷 𝑖 +2𝑡𝑠𝑝)

 
𝑕𝑠𝑝                                                           (36) 

The total volume of pressurizer 

𝑉 = 𝑉𝑢𝑕+ 𝑉𝑙𝑕+ 𝑉𝑠                                                                  (37) 

 

3.2.4 Model validation 

Table 2 presents the comparison between the model 

evaluation results and actual values of Qinshan I 

pressurizer
[15]

. One can see that all the relative errors 

are within 2% when compared with actual values. It 

indicates that the mathematical model is accurately 

enough to be applied for optimization design. 

 

Table 2 Evaluation results of Qinshan I pressurizer 

Parameters 
Actual 
value 

Evaluation 
value 

Error 
 (%) 

Pressurizer height/m 
7.74 7.61 -1.68 

Pressurizer diameter/m 
2.6 2.6 0 

Pressurizer volume/m3 35 34.6 -1.14 

Pressurizer weight/t 89 89.8 0.9 

 

4 Optimization design 

Based on the modified optimization algorithm 

proposed in section 2 and the mathematical models 

established in section 3, the weight and volume 

optimization of Qinshan I steam generator and 

pressurizer are implemented in this section. 

 

4.1 Optimization of steam generator 

4.1.1 Design variables and objective function 

For parameter optimization, design variables are the 

parameters that influences objective value remarkably 

and independently. For the weight and volume 

optimization of steam generator, the flowing 

parameters are design variables: primary loop 

pressure  𝑃 , reactor inlet coolant temperature  𝑇𝑖𝑛 ,  

reactor outlet coolant temperature 𝑇𝑜𝑢𝑡 , average flow 

velocity in U-tube  𝑢𝑓 , secondary loop pressure 𝑃 , 

feedwater temperature 𝑇𝑓𝑤 , U-tube outer diameter 𝑑𝑜, 

ratio of U-tube pitch to U-tube outer diameter  s/𝑑𝑜. 

Therefore the vector of design variables can be 

expressed as 

𝐗 = (𝑥 ,  𝑥 ,  𝑥3,  𝑥4 ,  𝑥5,  𝑥6,  𝑥7,  𝑥8)
𝑇

                = (𝑃 ,  𝑇𝑖𝑛,  𝑇𝑜𝑢𝑡,  𝑢𝑓,  𝑃 ,  𝑇𝑓𝑤,  𝑑𝑜,  𝑠/𝑑𝑜)
𝑇             (38) 

As the weight and volume minimization of steam 

generator are objective, the objective functions are 

written in form as 
𝑊𝑆𝐺 = min

𝜑𝑖(𝐗)≤0
𝑓(𝑃 ,  𝑇𝑖𝑛,  𝑇𝑜𝑢𝑡 ,  𝑢𝑓,  𝑃 ,  𝑇𝑓𝑤,  𝑑𝑜 ,  𝑠/𝑑𝑜)     (39) 

𝑉𝑆𝐺 = min
𝜑𝑖(𝐗)≤0

𝑓(𝑃 ,  𝑇𝑖𝑛,  𝑇𝑜𝑢𝑡 ,  𝑢𝑓,  𝑃 ,  𝑇𝑓𝑤,  𝑑𝑜,  𝑠/𝑑𝑜)      (40) 

Where 𝜑𝑖
(𝐗) ≤ 0 presents the ensemble of constraint 

functions, 𝑖 is the number of constraint functions. 

 

4.1.2 Constraint conditions 

The parameter optimization of steam generator is 

subject to many constraints and requirements. 

Considering the thermal-hydraulic and suitability, the 

following constraints should be satisfied. 

1. The design variables are bounded with upper and 

lower limits. For details, see table 3. 

2. The circulation ratio (𝐶𝑅) of steam generator should 

be within specified boundaries.  

3. The secondary loop flow velocity (𝑢𝑜) should be 

larger than certain value to alleviate or avoid 

stagnant area. 

4. The height of steam generator, number of U-tubes, 

tube buddle diameter and tube thickness should be 

restricted. 

 



Application of adaptive genetic-simplex algorithm in parameter optimization of nuclear power components 

 Nuclear Safety and Simulation, Vol. 7, Number 1, July 2016 71 

4.1.3 Optimization results 

The optimization results are given in Table 3.The 

optimum weight is 169.88 t, it is 18.56% less than 

original value. Because of the powerful search 

capability of AGSA, the weight optimization result is 

superior to QIN’s work whose optimum value is 17.16% 

less than original. As the models for steam generator 

weight optimization are the same in both works. For 

volume optimization of steam generator, an 18.39% 

reduction is obtained. 

 

Table 3 also presents the variation of design variables 

and main parameters due to optimization. It indicates 

that the variable variation trends in weight and 

volume optimization are similar. The primary loop 

pressure  𝑃  determines the material thickness of 

steam generator shell. It decreases in the optimization, 

which reduces the weight and volume directly. The 

reactor inlet/outlet coolant temperature ( 𝑇𝑖𝑛  and  𝑇𝑜𝑢𝑡 ) 

and secondary loop pressure  𝑃  influence the 

objectives in synergetic mechanism. On the one hand, 

the average temperature of primary loop water 

increases with the value of 𝑇𝑖𝑛 and 𝑇𝑜𝑢𝑡 , on the other 

hand, the temperature of secondary loop water 

decreases with the reduction of secondary loop 

pressure  𝑃 . These factors leads to a larger 

temperature difference of heat transfer, which means 

smaller heat transfer area is needed, finally the 

reduction of weight and volume. With the increasing 

of 𝑢𝑓 and 𝑢𝑜, the heat transfer coefficient increases, 

which reduces the heat transfer area in another way. 

Meanwhile, a larger 𝑢𝑜  help to alleviate stagnant 

area in heat transfer region. As for U-tube outer 

diameter  𝑑𝑜  and tube pitch coefficient  s/𝑑𝑜 , they 

both decrease because the dimension of U-tube buddle 

is directly proportional to their values. Note that the 

variation of 𝑑𝑜and  s/𝑑𝑜  might cause the circulation 

ratio  𝐶𝑅  out of range. In the weight and volume 

optimization, the values of circulation ratio are 4.06 

and 4.13 respectively, and they are in reasonable 

range. 

 

4.2 Optimization of pressurizer 

4.2.1 Design variables and objective function 

For the weight and volume optimization of pressurizer, 

the flowing parameters are design variables: 

pressurizer inner diameter  𝐷𝑖 , primary loop 

pressure  𝑃 , reactor inlet coolant temperature  𝑇𝑖𝑛 , 

reactor outlet coolant temperature  𝑇𝑜𝑢𝑡 , and spray 

coefficient  𝛼𝑠𝑝 . Therefore the vector of design 

variables can be expressed as 
𝐗 = (𝑥 ,  𝑥 ,  𝑥3 ,  𝑥4 ,  𝑥5)

𝑇

           = (𝐷𝑖,  𝑃 ,  𝑇𝑖𝑛,  𝑇𝑜𝑢𝑡 ,  𝛼𝑠𝑝)
𝑇                                           (41) 

As the weight and volume minimization of pressurizer 

are objective, the objective functions are written in 

form as 
𝑊 = min

𝜑𝑖(𝐗)≤0
𝑓(𝐷𝑖 ,  𝑃 ,  𝑇𝑖𝑛,  𝑇𝑜𝑢𝑡 ,  𝛼𝑠𝑝)                                 (42) 

𝑉 = min
𝜑𝑖(𝐗)≤0

𝑓(𝐷𝑖,  𝑃 ,  𝑇𝑖𝑛,  𝑇𝑜𝑢𝑡,  𝛼𝑠𝑝)                                 (43) 

Where 𝜑𝑖
(𝐗) ≤ 0 presents the ensemble of constraint 

functions, 𝑖 is the number of constraint functions. 

 

4.2.2 Constraint conditions 

Taking thermal-hydraulic performance into 

consideration, the following constraints should be 

satisfied. 

1. The design variables are bounded with upper and 

lower limits. For details, see table 4. 

2. The height of pressurizer isn’t arbitrary, and it 

should not exceed an upper limit.  

3. The difference between reactor inlet coolant 

temperature and outlet coolant temperature is 

constant. 

4. The steam volume and the water volume should be 

in a reasonable range at full power state. 

The minimum steam volume must be larger than a 

lower limit. 

 

4.2.3 Optimization results  

The optimization results of pressurizer are given in 

Table 4. The optimum weight is 74.28 t and it is 16.54% 

less than the original value. This optimization result is 

superior to LIU’s work whose optimum weight is 

75.38 t. As the models for pressurizer weight 

optimization are the same in both works. For volume 

optimization of pressurizer, an 18.97% reduction is 

obtained. 

 

The variation of design variables are also presented in 

Table 4. It indicates that the variable variation trends 

in weight and volume optimization are similar. The 

primary loop pressure 𝑃 , reactor inlet/outlet coolant 

temperature (  𝑇𝑖𝑛  and   𝑇𝑜𝑢𝑡 ) and pressurizer inner 

diameter  𝐷𝑖  decrease in different degree, and spray 

coefficient 𝛼𝑠𝑝  is the only design variable that 

increases in the optimization. A relatively large 𝛼𝑠𝑝  
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leads to a smaller steady-state minimum steam volume, 

which means smaller pressurizer volume is obtained. 

 

5 Conclusion 

An adaptive genetic-simplex algorithm (AGSA) is 

proposed for parameter optimization of nuclear power 

components. The AGSA integrates adaptive techniques, 

genetic algorithm and simplex algorithm and its strong 

search ability is validated. 

 

The optimization results of steam generator and 

pressurizer shows that the minimized weight and 

volume can vary in the range of 80-85% of the original 

values. 

It indicates that an optimization algorithm with 

outstanding search ability is indispensable in dealing 

with nonlinear constrained optimization problem. The 

optimization results indicate that there is much space to 

reduce the weight and volume of existing nuclear 

power components by parameter optimization. And the 

optimization method and result can provide reference 

for engineering des ign of such kind components. Note 

that the optimization results of weight and volume may 

be amplif ied because the target models and 

optimization constraints have been simplified. 

 

 

 
Table 3 Constraints and optimization results of steam generator 

Parameter Unit 
Qinshan I 

value 

Lower 

bound 

Upper 

bound 

Volume 

optimization 

Relative 

deviation 

Weight 

optimization 

Relative 

deviation 

𝑃  MPa 15.2 14.5 15.5 14.78 -2.76% 14.61 -3.88% 

 𝑇𝑖𝑛 ℃ 288.8 278.8 293.8 291.9 1.07% 292.1 1.14% 

 𝑇𝑜𝑢𝑡  ℃ 315.2 305 320 316.4 0.38% 316.2 0.32% 

𝑢𝑓 m/s 5.2 4.0 6.0 5.5 5.77% 5.6 7.69% 

 𝑃  MPa 5.54 4.0 7.0 5.14 -7.22% 5.22 -5.77% 

𝑇𝑓𝑤 ℃ 220 210 230 223.7 1.68% 225.8 2.64% 

𝑑𝑜 m 0.022 0.015 0.03 0.021 -4.55% 0.02 -9.09% 

s/𝑑𝑜 － 1.41 1.2 1.6 1.31 -7.09% 1.29 -8.51% 

𝐶𝑅 － 4.45 3.0 5.5 4.13 -7.19% 4.06 -8.76% 

𝑢𝑜 m/s 0.4 0.3 0.5 0.41 2.5% 0.42 5.0% 

𝐻𝑆𝐺 m 17.28 14.0 20.0 16.31 -5.61% 15.93 -7.81% 

 𝑉𝑆𝐺 m3 151.2 － － 123.39 -18.39% － － 

 𝑊𝑆𝐺 t 208.6 － － － － 169.88 -18.56% 

 

Table 4 Constraints and optimization results of pressurizer 

Parameter Unit 
Qinshan I 

value 

Lower 

bound 

Upper 

bound 

Volume 

optimization 

Relative 

deviation 

Weight 

optimization 

Relative 

deviation 

𝑃  MPa 15.2 14.5 15.5 14.66 -3.55% 14.72 -3.16% 

 𝑇𝑖𝑛 ℃ 288.8 278.8 293.8 279.1 -3.36% 282.5 -2.18% 

 𝑇𝑜𝑢𝑡  ℃ 315.2 305 320 305.9 -2.95% 308.8 -2.03% 

𝛼𝑠𝑝 － 0.5 0.4 0.6 0.53 6.0% 0.55 10.0% 

𝐷𝑖 m 2.6 2.2 3.0 2.41 -7.31% 2.48 -4.61% 

 𝑉𝑝 m3 35 － － 28.36 -18.97% － － 

 𝑊𝑝  t 89 － － － － 74.28 -16.54% 
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