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Abstract: A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressur-

ized water reactor (PWR) core calculations without fuel-moderator homogenization. It employs diffusion 

theory in the axial direction combined with two-dimensional transport in the x-y plane. In the x-y direction, 

finite element trial functions are applied to explicitly model the pin resolved geometry. On the axial interfaces, 

piece-wise constant trial functions are used to eliminate the interface homogenization that has been a challenge 

for method of characteristics (MOC) based 2D/1D approximations, and resolve the lack of convergence as the 

axial mesh is refined. In this paper, the method is tested with the un-rodded C5G7 benchmark case, and the 

cost-accuracy trade-offs between different angular treatments are analyzed. 
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1 Introduction
1
 

Nowadays substantial neutronics researches have 

been carried out to develop methods that require no 

cross-section homogenization. Among them the 

2D/1D approximations based on the method of char-

acteristics (MOC) are most widely used, by coupling 

planar MOC calculations together with 1D axial ap-

proximations. However, in these methods, smearing 

between fuel and coolant at each axial interface usu-

ally occurs, leading to lack of convergence as the 

axial mesh is refined 
[1][2]

. 

 

As an alternative approach, in this work a 2D/1D 

variational nodal method (VNM) without spatial ho-

mogenization is formulated and implemented in the 

PANX (Purdue - Argonne - Northwestern - Xi’an) 

code. We employ diffusion theory in the axial direc-

tion combined with two-dimensional transport in the 

x-y plane. In the x-y direction, finite element trial 

functions are applied to explicitly model the pin re-

solved geometry. On the axial interfaces, piece-wise 

constant trial functions are used to avoid smearing 

between the fuel and coolant 
[3]

. 

                                                        
Received date: October 19, 2016 

(Revised date: November 23, 2016) 

Based on the even-parity form of the transport equa-

tion, three different approaches are employed in the 

angular treatment. First we implement the standard 

spherical harmonics method 
[4]

. To increase accuracy 

and reduce computational effort, we present two oth-

er refinements: First, the even-parity integral method 
[5]

 within the nodes reduces the computational effort 

required to form the response matrices. Second, the 

application of quasi-reflected interface conditions 
[6]

 

reduces the dimension of the resulting response ma-

trices and therefore the CPU time required to solve 

the matrix equations. The performances of the meth-

ods are compared with the two-dimensional and 

three-dimensional un-rodded C5G7 benchmark prob-

lems 
[7]

. 

 

2 Theory 

We start with the even-parity within-group transport 

equation suitable for implementing a 2D/1D ap-

proximation in a variational nodal form: 
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where    is the even-parity angular flux. Note that 

the cross derivatives between axial and radial direc-
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tions vanish, and the axial leakage is approximated 

with diffusion theory. The corresponding variational 

nodal functional is 
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where 


 is the odd-parity flux along the surface   

of the node volume V . 

 

To discretize Eq. (2) in a form suitable for PWR 

computations, special treatments must be made in both 

spatial and angular variables.  

 

For the spatial approximation, trial functions that are 

finite element trial functions in x-y and orthogonal 

polynomials in z within the node are applied. Mean-

while, orthogonal polynomials are used on the lateral 

interfaces; piecewise constant zones, each corre-

sponding to a finite element, are employed on the axial 

interfaces. The axial treatment avoids smearing be-

tween fuel and coolant regions at the interfaces and 

guarantees convergence as the axial meshes are re-

fined.  

 

For the angular approximation, three different ap-

proaches are employed, which are labeled as below: 

a) In PANX, angular discretization is carried out in 

the same way as that used in conventional VNM. 

Even-parity spherical harmonics are adopted 

within the nodes and the corresponding 

odd-parity moments are used at the interfaces. In 

this case, as high order spherical harmonics are 

employed, CPU times and memory requirements 

become excessive both in forming the response 

matrices and in solving the matrix equations. 

b) In PANX-I, the spherical harmonics expansion 

within the node is substituted by an even-parity 

integral method 
[5]

, while the spherical harmonics 

expansion is retained on the x-y interfaces. With 

this treatment, both the CPU time and memory 

required to form the response matrices can be 

greatly reduced. However, the retention of high 

order spherical harmonics on the interfaces still 

cause the dimensions of the response matrices to 

be large. As a result, the solution time grows 

rapidly with the PN order.  

c) In PANX-IQ_m, the integral treatment is pre-

served within the node, but the high-order PN 

interface conditions are reduced by applying re-

flected interface conditions to eliminate the high 

order moments, while retaining lower order 

moments through up to Pm 
[6]

. 

 

 
Fig. 1 Quadratic finite element grid for a C5G7 fuel pin cell. 

 

3 Results 

3.1 C5G7 Two-dimensional results 

In order to examine the order of angular approxima-

tion needed to obtain accurate results in the x-y plane, 

we first tested against the 2D C5G7 benchmark. For 

each of the pin cells in the four fuel assemblies, the x-y 

even-parity flux is approximated by 32 quadratic finite 

elements as shown in Fig. 1. The calculations were 

performed without parallelization on an Intel Xeon 

X7560 CPU. The Monte Carlo 2D reference at a 98% 

confidence interval is k = 1.18655± 0.00006. The 

three different angular treatments illustrated in chapter 

2 are compared. Particularly, in the PANX-IQ_m 

calculations, m value of 1, 3, 5 are adopted to see the 

impact of increasing the low order moments. 

 

The eigenvalue comparisons for the 2D C5G7 

benchmark is shown in Fig. 2. First, with all three 

approaches, clear convergences toward the reference 

can be seen by increasing the PN interface order. 

Meanwhile, with PANX calculation, the applicable PN 

order is strongly limited to achieve adequate accuracy. 

Second, the integral method seems more accurate than 

using a PN expansion within the node because very 

high order cubature can cheaply be applied to evaluate 

the angular integrals. Third, in PANX-IQ_m calcula-

tions, m = 1, 3, 5 come progressively closer to con-

verging to the PANX-I as well as the Monte Carlo 

reference result as PN is increased to P23. 
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Fig. 2 Eigenvalue vs. PN approximation for the 2D C5G7 benchmark. 

 

Table 1 lists the eigenvalue accuracy and computa-

tional costs of PANX-IQ_1, PANX-IQ_3, 

PANX-IQ_5 and PANX-I by the P21 interface ap-

proximation. Table 2 tabulates the percentage pin 

power error comparisons. It includes the error of the 

maximum power pin (Max pin), the maximum pin 

power error (MAX), the average pin power error 

(AVG) and the root-mean-square error (RMS). Ob-

viously, PANX-I obtains the best accuracy in eigen-

value and pin power distribution as it incorporates the 

full P21 interface approximation. Meanwhile, the 

PANX-IQ_1 interface condition presents similar ei-

genvalue accuracy as PANX-IQ_3; however as is 

shown in Table 2, this advantage does not carry over to 

the pin power distributions. On the other hand, it is 

noted that PANX-IQ_3 achieves 60% less computa-

tional time and 90% less memory compared to 

PANX-I, with only negligible loss of accuracy ( 21 

pcm in eigenvalue and 0.04% in RMS pin power ). 

Therefore, for the 2D/1D calculations of the 

three-dimensional problem, we choose the accuracy of 

P23 and m = 3 to be adequate. 

 
Table 1. The eigenvalue errors and computational costs of 

the 2D C5G7 benchmark by different interface approxi-

mations with P21 

 
Eigenvalue 

Error-pcm 
Total time-h Storage-MB 

PANX-IQ_1 25 0.67 51 

PANX-IQ_3 21 0.68 68 

PANX-IQ_5 10 0.66 94 

 

 

 

It is also noticed in Table 2 that the maximum pin 

power error with PANX-IQ_m or PANX-I calcula-

tions are not as good as the Monte Carlo solution. 

However, this discrepancy is seen as insignificant. As 

is illustrated in Fig. 3, the maximum pin power error 

always occurs at the outer core regions, where the 

absolute value of pin power is much lower than the 

core averaged level. 

 
Table 2. The percentage pin power error comparisons of the 

2D C5G7 benchmark by different interface approximations 

with P21 

 Max pin Max AVG RMS 

Monte Carlo 0.07 0.19 0.14 0.14 

PANX-IQ_1 -1.16 3.02 0.72 0.97 

PANX-IQ_3 -0.31 0.90 0.23 0.28 

PANX-IQ_5 -0.26 0.84 0.21 0.26 

PANX-I -0.26 0.80 0.20 0.24 

 

 
Fig. 3 Pin power error distribution of the 2D C5G7 benchmark 

by the PANX-IQ_3 calculation. 
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3.2 C5G7 three-dimensional results 

For the 3D C5G7 problem, the domain is divided into 

9 axial nodes, with the axial flux distribution within 

each node represented by a quadratic polynomial. The 

radial interfaces are approximated with quadratic 

polynomials and the axial interfaces by 32 piecewise 

constants.  

 
Table 3. Pin Power comparisons for 3D un-rodded C5G7 

Benchmark 

  Max Pin-% Max-% RMS-% 

PANX P11 0.12 1.20 0.28 

PANX-I P15 -0.55 1.12 0.43 

PANX-IQ_3 P23 -0.44 1.00 0.35 

 

The eigenvalue comparisons for the 3D C5G7 

un-rodded case are shown in Fig. 4. The Monte Carlo 

3D reference is k = 1.14308 ± 0.00006 at 98% confi-

dence interval. Similar to the 2D results, asymptotic 

convergence can be observed by increasing the PN 

angular order with all three different angular treat-

ments. For three-dimensional problems, one may 

expect some under-estimation from the Monte Carlo 

reference since the use of diffusion theory in the axial 

direction is overestimating the axial leakage. There-

fore, the eigenvalues keep reducing with increasing 

the PN order, and finally achieve the asymptotic con-

vergence when N=23. The PANX-IQ_3 with P23 un-

derestimated the Monte Carlo result by 81 pcm. The 

pin power results with the highest applicable PN order 

for the three sets of calculations are tabulated in Table 

3. PANX-IQ_3 calculation with P23 has a maximum 

error of 1.00%. 

 

It is illustrated in Fig. 4 that PANX calculations with 

higher than P11 and PANX-I calculations with higher 

than P15 are impractical due to the prohibitive com-

putational costs. However, with PANX-IQ_3, we are 

able to achieve the final asymptotic convergence with 

an angular order of P23. Figure 5 shows the CPU time 

comparisons between the three different angular 

treatments with angular orders up to P11. It can be 

observed that for PANX and PANX-I, the CPU time 

increases dramatically as the PN order at the pin cell 

lateral boundaries increases. In contrast, the 

PANX-IQ_3 calculation time remains nearly flat as 

the PN order goes up, requiring substantially less so-

lution time because the dimension of the the response 

matrices are preserved as those of P3.  

 

The computational time for PANX-IQ_3 with P23 

with-in node approximation required only 3.90 hr, 

with 1.9 hr required for response matrix formation and 

2.00 hr for solution. To further reduce the CPU time, 

we have also implemented a modified form of parti-

tioned matrix acceleration, which reduces the solution 

time to 0.18 hr. Thus the total time is 2.08 hr. 

 

 
Fig. 4 Eigenvalue pcm Error vs. PN Order for the 3D un-rodded C5G7 benchmark. 
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Fig. 5 The CPU time comparisons for the 3D un-rodded C5G7 benchmark. 

 

4 Future work 

Efforts to increase accuracy are being focused on 

implementing a PN axial approximation to improve 

upon the present P1 approximation. Efforts will also be 

undertaken to reduce the CPU time required to form 

the response matrices. Acceleration of the fission 

source iteration will also be considered. 
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