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Abstract: Nuclear power plants in Republic of Korea have been constructed with a new type of main control 

room called a digitalized main control room. In a digitalized main control room, because digital technologies 

have been adopted, the environment of the main control room is different from that of conventional main 

control rooms. The operators may obtain plant data via digitalized human system interfaces, large display 

panels, computerized procedure systems, soft controls and so on. Accordingly, the necessity of considering 

the new environment when performing human reliability analysis methods has been raised. In this research, a 

new method was proposed to assess the human error probability in a digitalized main control room. The goal 

of this paper is to apply the suggested frameworks to assess the human error probability. For that, each 

framework is briefly described and applied for two selected human failure events. As a result, the nominal 

human error probabilities are obtained for two human failure events. This study represents a good starting 

point from which to devise a very useful framework to estimate the human error probability in digitalized 

MCRs. 
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1 Introduction
1
 

In the Republic of Korea, because the new type of 

nuclear power plant (NPP), known as the advanced 

power reactor-1400 (APR-1400), has adopted a 

digitalized main control room (MCR), the necessity 

of using a new method to estimate the human error 

probability (HEP) has been raised. In the digitalized 

MCR, a large display panel (LDP), a computerized 

procedure system (CPS), digitalized human system 

interfaces (HSIs), soft controls and other system 

features have been newly installed, as shown in Fig. 1. 

These changes affect the behavior characteristics of 

MCR operators 
[1]

. MCR operators will monitor the 

related parameter, assess the situation, and control the 

plant through the new type of devices. Then, they 

should perform their tasks in a new manner. In this 

regard, a new human reliability analysis (HRA) 

method that can deal with these changes should be 

developed.  
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However, there have been no HRA methods proposed 

to deal with the new environment of the digitalized 

MCR. Even the most widely used HRA methods, 

known as THERP (Technique for Human Error Rate 

Prediction), ASEP (Accident Sequence Evaluation 

Program) and SPAR-H (Standardized Plant Analysis 

Risk-Human Reliability Analysis) consider 

behavioral characteristics of operators who typically 

deal with the paper-based procedures, analogue 

indicators and alarm tiles of conventional MCRs 
[3-5]

. 

ATHEANA (A Technique for Human Event Analysis) 

was developed for use in various situations at NPPs, 

and this method provides considerable flexibility. 

However, this method requires considerable expertise 

Fig.1 An overview of the digitalized MCRs. 
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and does not provide a formal list of activity types, 

performance shaping factors (PSFs) or explicit 

guidelines 
[6]

. 

 

New frameworks was proposed to estimate the HEPs 

in the digitalized MCR 
[1,2]

. One framework is the 

updated TRC (Time Reliability Correlation) model, 

which is used to assess the probabilities of diagnosis 

errors; another framework is SCHEME (Soft Control 

Human error Evaluation Method), which is used to 

estimate the probabilities of execution errors when 

performing soft control tasks in the digitalized MCR 
[1,2]

. Since the HEP is traditionally obtained using Eq. 

(1) 
[3]

, the HEP in the digitalized MCR can be also 

assessed using the two proposed frameworks. 

HEP = Pr. (𝐷𝐸) + Pr. (𝐸𝐸)   (1) 

where Pr. (DE) is the probability of diagnosis error 

and Pr. (EE) is the probability of execution error.  

The aim of this paper is to apply the suggested 

frameworks to assess the HEPs in digitalized MCRs. 

In the following sections, the suggested frameworks, 

including the updated TRC model and SCHEME, are 

briefly introduced, and these two frameworks are 

applied to calculate the HEPs in digitalized MCRs. 

  

2 Brief explanation of the updated 

TRC model 

As mentioned above, the APR-1400 adopts a 

digitalized MCR including LDP, CPS, digitalized 

HSIs, advanced alarm systems and other system 

features. These new features hugely affect MCR 

operators’ generic activities, especially their 

diagnosis activities 
[7-11]

. Accordingly, an updated 

TRC model for use in the digitalized MCR was 

suggested. The TRC model is generally used to 

estimate the probabilities of diagnosis errors. The 

details of the TRC model are addressed in the 

following section. 

 

2.1 Details of the TRC model 

There are various TRC models such as the THERP 

nominal diagnosis model, the human cognitive 

reliability (HCR) model and others 
[12]

. In this study, 

the TRC model provided in THERP was utilized, 

which is the most widely used HRA method. In 

THERP, the basic idea of the TRC model is as 

follows: how long it will take MCR operators to 

correctly diagnose the nature of an unusual event 

when they perform rule-based or skill-based activities 

to mitigate the event 
[3]

.  

 

The TRC model suggests the probability of a failure 

to diagnose an event correctly with time T; the failure 

probability is log-normal distributed, as shown in Fig. 

2. Here, T0 indicates the time at which the operator 

notices that some abnormal condition exists; the three 

lines are the plot uncertainly, as follows: (1) the upper 

bound, (2) the median joint HEP to diagnose, and (3) 

the lower bound 
[3]

. 

 

Since the TRC model provided by THERP does not 

consider the features of digitalized MCRs, the TRC 

model was updated to be used in MCRs. The process 

to update the TRC model is addressed in the section 

below. 

 

2.2 Process of updating the TRC model 

In order to update the TRC model, three steps were 

performed. The first step was to analyze diagnosis 

errors using the information processing model and to 

calculate the probabilities of diagnosis errors. Here, 

diagnosis errors were extracted from experiments 

performed in full-scope simulators of the digitalized 

MCRs. The second step was to qualitatively and 

quantitatively analyze PSFs for the analyzed 

diagnosis errors. The third step was to assess the 

nominal probabilities of diagnosis errors and to 

update the TRC model by applying the Bayesian 

inference. The details of each step are as follows 
[1]

: 

 

- 1
st
 step: Analysis of diagnosis errors and 

calculation of their probabilities 

Human error can be explained on the basis of the 

ways in which people process information in 

Fig.2 The TRC model provided in THERP [3]. 
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complex and demanding situations 
[13]

. In this study, 

the information processing model suggested from 

ATHEANA was adopted in order to analyze 

diagnosis errors. This model includes four activities, 

including monitoring & detection, situation 

assessment, response planning and response 

implementation 
[13,14]

. In this study, diagnosis error 

was defined as a failure to make a correct decision 

for the required task or actions within the available 

time. Here, decision is made as a result of operator’s 

information processing 
[1]

. In order to calculate the 

probabilities of diagnosis errors, Eq. (2) was used. 

Traditionally, the HEP is defined as the probability 

that, when a given task is performed, an error will 

occur 
[3]

. 

 

Here, the HEP is the probability of human error 

relative to its opportunity, m, while n indicates the 

number of errors observed.  

𝐻𝐸𝑃 = 𝑛/𝑚      (2) 

This probability was fitted to a binomial distribution 

with two assumptions 
[15]

. The first assumption is that 

the probability of committing an error when 

performing a task is a fixed (non-random) but 

unknown value from 0 to 1. The second assumption 

is that the task is performed independently.   

However, there were several cases in which no failure 

data were found to exist. In these cases, the zero 

failure estimation was applied, as shown in Eq. (3) 
[16]

. where HEP’ indicates that the number of failures 

is zero, and the number of trials is m’. 

HEP′ = 1 − 0.51 𝑚′⁄      (3) 

Using Eq. (2) and Eq. (3), the probabilities of 

diagnosis errors that were collected from the 

experiments were calculated. 

 

- 2
nd

 step: Qualitative and quantitative analysis of 

PSFs 

In performing HRA, the conditions that influence the 

human performance are represented using several 

context factors called PSFs. PSFs are aspects of the 

human’s individual characteristics, environment, 

organization, or task that specifically decrease or 

improve human performance, thus respectively 

increasing or decreasing the HEPs 
[24]

. Since the 

probabilities of diagnosis errors extracted from the 

experiments included the influence of PSFs, PSFs 

should be investigated in order to obtain the nominal 

probabilities of diagnosis errors. 
 

In order to analyze PSFs for the analyzed diagnosis 

errors, nine PSFs that are used in digitalized MCRs 

were utilized, including 
[17]

: stress level, action type, 

experience, time constraints, places where operators’ 

actions are taken, procedure, training, HSI and 

teamwork. For a qualitative analysis of PSFs, 

decision trees and their guidelines, suggested by 

Seong 
[18]

, were utilized. In 
[18]

, a decision tree and its 

guidelines were developed to qualitatively analyze 

each PSF. For the quantitative analysis of PSFs, a 

profiling technique by Kirwan 
[19]

 was applied. The 

original baseline HEP can be obtained based on 

differences in the profiles. If each human error datum 

is described in terms of the same PSFs, comparison 

and extrapolation between human error data can be 

performed; this can be used to create a profile for 

human error datum 
[19]

. By comparing each profile of 

human error datum, weightings of PSFs can be 

assessed. In this manner, the weightings of PSFs for 

each diagnosis error can be estimated. Based on these 

results, the nominal probabilities of diagnosis errors 

were calculated in this study.  

 

- 3
rd

 step: Update the TRC model using Bayesian 

inference 

In order to update the TRC model, the Bayesian 

inference was used. The Bayesian inference is a 

means of updating a probability estimate for a 

hypothesis when additional evidence is acquired, as 

shown in Eq. (4). 

p(θ|𝑦) = 𝑝(𝑦|𝜃)𝜋(𝜃) ∫ 𝑝(𝑦|𝜃)𝜋(𝜃)𝑑𝜃⁄    (4) 

Here, y indicates a data point in general and θ 

indicates the parameter of the data point’s distribution, 

i.e., x ~ p(y|θ). The prior distribution is the 

distribution of the parameters before any data are 

observed, i.e., π(θ), and the sampling distribution of 

the distribution of the observed data conditional on 

its parameter, i.e., p(y|θ); the posterior distribution is 

the distribution of the parameters after taking into 

account the observed data 
[4]

. In this study, the 

probabilities of diagnosis errors provided in the TRC 

model were used as the prior distribution; this 

probability was fitted to a log-normal distribution, as 

shown in Eq. (5). In addition, for observed diagnosis 
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errors, a binomial distribution was used as a 

likelihood distribution. Thus, the probabilities of 

diagnosis errors calculated in the experiments using 

full-scope simulators of digitalized MCRs were used 

as the observed diagnosis errors. Eq. (6) shows the 

likelihood distribution 
[1]

. Using Eq. (5) and Eq. (6), 

the updated TRC model was derived as the posterior 

distribution. The results of updating the TRC model 

are shown in the following section. 

π(θ) = (1 √2𝜋𝜎2⁄ )exp [−(ln 𝜃 − 𝜇)2 2𝜎2⁄ ]    (5) 

p(y|𝜃) = {𝑛!/𝑦! (𝑛 − 𝑦)!}𝜃𝑦(1 − 𝜃)𝑛−𝑦   

          𝑦 ∈ {0,1, … , 𝑛}                (6) 

Here, σ is the scale parameter, μ is the number of 

trials.  

 

2.3 Suggestion of the updated TRC model in 

digitalized MCRs 

As data sources, experiments performed in the full-

scope simulators of digitalized MCRs were used. 

Here, a total of eighteen human failure events (HFEs) 

were included and a total of twenty-three crews 

participated 
[1]

. For all HFEs, the available times to 

diagnose the events ranged from 4 minutes to 720 

minutes. The number of diagnosis errors, the 

weightings of PSFs, and the nominal probabilities of 

diagnosis errors were investigated. Based on these 

results, an update of the TRC model was performed 

using the Bayesian inference, as shown in Fig. 3.  

 

However, because of an insufficient quantity of data, 

only certain data points have been updated so far. For 

these data, it has been difficult to provide the updated 

TRC model with accurate values. Nonetheless, this 

study represents a good starting point from which to 

devise a very useful framework for the estimation of 

diagnosis error probabilities in digitalized MCRs. 

Accordingly, in this paper, as a preliminary study, the 

HEPs in the digitalized MCR were assessed with 

SCHEME. SCHEME is a framework proposed for 

the estimation of the probabilities of execution error 

when performing soft control tasks in a digitalized 

MCR. A brief introduction of SCHEME is provided 

in the following section. 

 

3 Brief explanation of SCHEME 

Soft controls are an important feature because the 

operation action in a digitalized MCR is performed 

by soft control 
[20]

. In addition, secondary tasks 

(interface management tasks) are a general 

characteristic of all digitalized MCRs, and also a 

major source of difference between digitalized and 

conventional MCRs 
[20]

. Accordingly, it is necessary 

to develop a framework for the evaluation of soft 

control execution error in digitalized MCRs. To this 

end, four steps were performed: (1) performance of 

soft control task analysis, (2) identification of soft 

control execution error mode, (3) consideration of 

dependency model, and (4) development of 

digitalized MCR specific soft control execution error 

probabilities database including recovery failure 

probabilities. In the following sections, the detail of 

each step are addressed 
[20,21]

. 

 

3.1 Soft control task analysis 

First, soft control task analysis in the digitalized 

MCR environment was performed to identify soft 

control human error modes. For this, task analysis of 

soft control was performed based on the emergency 

operating procedure (EOP), which considers the 

features of soft control such as navigation tasks, 

interface management tasks and so on 
[21]

. Here, 

SHERPA (Systematic Human Error Reduction and 

Prediction Approach) was used to perform the soft 

control task analysis 
[22,23]

. In this study, ‘Task’ and 

‘Subtask’ were carefully defined to avoid 

inconsistency. ‘Task’ appears as items in procedures 

(each task then consists of a number of subtasks) and 

‘Subtask’ appears as items in tasks 
[20,21]

.  

 

An example of the performance of SHERPA is shown 

in Fig. 4. Let us assume that there is one task, to reset 

SIAS (Safety Injection Actuation Signal) and AFAS 

(Aux Feed-water Actuation Signal) 
[21]

. In order to 

achieve the goal, the operator selects the ‘‘Reactivity 

Fig.3 The updated TRC model [1]. 
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system screen” from the operator console (flat 

monitor) and resets the SIAS. To reset the SIAS, 

other subtasks must be performed: ‘‘Press bypass 

button from the operator console”, ‘‘Press the 

acknowledge button” and finally ‘‘Press bypass 

button ESCM (ESF-CCM Soft Control Module)”. 

Another subtask, ‘‘Reset the AFAS”, which is 

performed to reset the AFAS, is then analyzed 
[21]

. 

 

Fig.4 The example of task analysis using SHERPA [22] 

 

3.2 Soft control execution error mode 

identification 

In this study, the possible soft control execution 

errors were classified into eight types as shown in 

Table 1. 

 

Table 1 Soft control execution error modes [21] 

Soft control human 

error mode 

Examples 

Operation selection 

omission (E0) 

Fail to execute a step in a procedure 

Operation execution 

omission (E1) 

Fail to execute an instruction in a 

step 

Wrong screen selection 

(E2SS) 

Fail to select a target screen to find a 

control device 

Wrong device selection 

(E2DS) 

Select a different valve instead of a 

target valve 

Wrong operation (E3) Press CLOSE button instead of ON 

button 

Mode confusion (E4) Fail to change AUTO mode to 

MANUAL mode to increase flow 

rate 

Inadequate operation 

(E5) 

Control flow rate too much or too 

little 

Delayed operation (E6) Too late operation 

 

These possible soft control execution error modes 

were identified based on the result of task analysis 

using SHERPA, and error modes were compared with 

other literatures 
[2]

. 

 

3.3 Dependency model in digitalized MCRs 

In NPP MCR, operator should perform the subtasks 

sequentially to complete one unit-task. Success path 

(a path that all sub tasks are succeeded) is considered 

to calculate the probabilities of soft control execution 

error and these probabilities will be calculated with 

consideration of the dependency among tasks. In 

other words, the probabilities of soft control 

execution errors = 1 - [success path probabilities 

with dependency model].  

 

Thus, two human actions are said to be dependent if 

the probability of failure of one action changes 

depending on the success or failure of the other. The 

given tasks contain different numbers of subtasks. 

Due to the sequential behavior of task completion, 

the failure or success of one subtask may, if the two 

subtasks are not mutually independent, affect the 

failure or success of the next subtask 
[21]

. In this 

research, the dependency model provided in THERP 

was used. In consideration of the dependency model, 

the probabilities of soft control execution errors can 

be assessed using Eq. (7). 

𝑃𝑟. (𝐸𝐸) = 1 − {(1 − 𝑅0𝐸0) × ∏
1+𝐾(1−∑ 𝑅𝑖𝐸𝑖𝑖≠0 )

1+𝐾
  (7) 

Here, Pr.(EE) is the probability of soft control 

execution error, Ei is the probabilities of soft control 

execution errors for each error mode, Ri is the 

recovery failure probabilities for each error mode, i is 

0, 1, 2SS, 2DS, 3, 4, 5 or 6 according to the defined 

error modes, and K is 19, 6, 1 or 0 depending on the 

dependency level. There are five dependency levels 

including zero dependency (ZD), low dependency 

(LD), medium dependency (MD), high dependency 

(HD) and complete dependency (CD). In order to 

determine the dependency level, a decision tree and 

its guideline have been suggested 
[2]

. 

 

3.4 Development of database (DB) for digitalized 

MCR specific soft control execution error 

probabilities 

In order to develop a DB for soft control execution 

error probability, experiments performed in the 

digitalized MCR mock-up, called the CNS (Compact 

Nuclear Simulator), were used. A total of forty-eight 

students majoring in nuclear engineering participated; 

tasks extracted from several procedures including 

STPA (Standard Trip Post Action), SGTR (Steam 
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Generator Tube Rupture), LOCA (Loss of Coolant 

Accident) and ESDE (Excess Steam Demand Event) 

were performed. Here, the Bayesian inference was 

also used to analyze the data collected from the 

experiments. Eq. (8) was used in order to calculate 

the probability of soft control execution errors.   

𝑝(𝜃𝑖|𝑛𝑖)

= {

1

𝐵(𝛼0 + 𝑛𝑖 , 𝛽0 + 𝑚𝑖 − 𝑛𝑖)
𝜃𝑖

𝛼0+𝑛𝑖−1(1 − 𝜃𝑖)
𝛽0+𝑚𝑖−𝑛𝑖−1   𝜃𝑖 ∈]0,1[,

0                                                                                                             𝑒𝑙𝑠𝑒,

(8) 

Suppose that mi follows a binomial distribution with 

parameters ni and θi, and suppose that θi has a beta 

distribution with parameter α0, and that β0, θi 

indicates a random variable describing the human 

error probability for performing a certain task i, ni is 

the number of errors that occurred, and mi is the 

number of times task i is performed. 

 

As a result of data analysis, the DB for soft control 

execution error probabilities is shown in Table 2.  

 
Table 2 The probabilities of soft control execution errors [2] 

Soft control 

human error mode 

Number 

of error 

Number of 

opportunity 

Probability 

(q50) 

Operation 

selection omission 

(E0) 

5 1274 4.10×10-3 

Operation 

execution 

omission (E1) 

2 4799 4.53×10-4 

Wrong screen 

selection (E2SS) 
4 2062 2.00×10-3 

Wrong device 

selection (E2DS) 
10 2494 4.10×10-3 

Wrong operation 

(E3) 
5 1458 3.50×10-3 

Mode confusion 

(E4) 
8 648 1.2×10-2 

Inadequate 

operation (E5) 
6 700 8.80×10-3 

Delayed operation 

(E6) 
0 2950 7.70×10-5 

 

Also, the recovery failure probabilities were 

calculated based on the results of the data analysis, as 

shown in Table 3. 

 
Table 3 The recovery failure probabilities [2] 

Soft 

control 

human 

error 

mode 

Number of 

error 

Number of 

opportunity 

Number of 

recoveries 

Recovery 

failure 

Probability 

(q50) 

E0 5 1274 0 0.96 

E1 2 4799 1 0.65 

E2SS 4 2062 39 0.096 

E2DS 10 2494 10 0.50 

E3 5 1458 6 0.46 

E4 8 648 26 0.24 

E5 6 700 5 0.54 

 

For more reliable and accurate evaluation, refinement 

of the proposed framework based on practical data 

from real digitalized MCRs is necessary. When a 

sufficient amount of operational data from the 

digitalized MCR full scope simulator are 

accumulated, the suggested framework can be 

adjusted using more reliable and practical values. 

 

4 Application to estimate the HEPs in 

digitalized MCRs 

In order to apply the two developed frameworks to 

the assessment of the HEPs in digitalized MCRs, two 

HFEs were selected: (1) Failure to cool down RCS 

(Reactor Coolant System) and (2) Failure to 

depressurize RCS. In this paper, among the eighteen 

HFEs in the above section, these two HFEs were 

selected (Section 2.3). The process of estimating the 

HEPs is described in the following sections.  

 

4.1 HFE #1: Failure to cool down RCS 

The first selected HFE is the failure to cool down 

RCS using the SG (Steam Generator). When a SGTR 

occurs as an initiating event, MCR operators are 

supposed to cool down the RCS using the intact SG 

in order to maintain the RCS temperature below the 

limit value. Here, the HEP of the HFE #1 can be 

calculated as follows: 

 

- Probability of diagnosis error 

The available time to diagnose the RCS cool-down is 

50 minutes 
[1]

. Based on Fig. 3, the median value can 

be assessed as “𝟏. 𝟖𝟏 × 𝟏𝟎−𝟒”. In addition, the mean 

value can be obtained as shown in Eq. (9). Here, the 

error factor has a value of “30” 
[3]

. Then, the nominal 

probability of diagnosis error is “𝟏. 𝟓𝟑 × 𝟏𝟎−𝟑”. 

Nominal Pr. (DE)

= 1.81 × 10−4

× 𝐸𝑥𝑝{(ln 30 /1.645)2/2}     

= 1.53 × 10−3                        (9) 
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- Probability of execution error 

In order to obtain the probability of soft control 

execution error, task analysis using SHERPA was 

performed, as shown in Fig. 5. 

 

As can be seen in Fig. 5, the operators should 

execute several subtasks in order to perform RCS 

cool-down. Based on the data in Tables 2 and 3, 

the probability of execution error was estimated as 

shown in Table 4.  

 
Table 4 The probability of execution error for HFE #1 

 Each task HSP Dependency 

0 
Cool-down 

RCS using 

MSADVs 

1-E0R0 0.999016 

Dependency 

was not 

considered 

because 

there no 

sequential 

tasks 

1 
Select 

secondary 

system 

1-E2SSR2SS 0.999984 

2 
Select MS 

screen 
1-E2SSR2SS 0.999984 

3.1 

Select 

MSADV 

valve on the 

screen 

1-E2DSR2DS 0.999487 

3.2 
Press 

'acknowledge' 

button 

1-E1R1 0.999926 

3.3 
Press 'open' 

button 

1-(E1R1 + 

E3R3 + 

E6R6) 
0.999504 

 Total HSP 9.98 × 10−1  

 Pr. (EE) 2.10 × 10−3  

 

As can be seen in Table 4, the nominal probability of 

execution error is “𝟐. 𝟏𝟎 × 𝟏𝟎−𝟑”. 

 

- Nominal HEP 

The nominal HEP can be calculated by summing the 

probability of diagnosis error and the probability of 

execution error. Then, the nominal HEP is “𝟑. 𝟔𝟑 ×

𝟏𝟎−𝟑”.  

 

4.2 HFE #2: Failure to depressurize RCS 

The second selected HFE is the failure to 

depressurize RCS. When SGTR occurs as the 

initiating event, the MCR operators are supposed to 

depressurize the RCS until the RCS pressure is lower 

than the ruptured SG pressure. The HEP of the HFE 

#2 can be calculated as follows: 

 

- Probability of diagnosis error 

The available time to diagnose RCS depressurization 

is 720 minutes 
[1]

. As shown in Fig. 3, the median 

value is “𝟏. 𝟔𝟖 × 𝟏𝟎−𝟓”. Based on the median value, 

the mean value can be obtained as shown in Eq. (10). 

Here, the error factor is also at the value of “30” 
[3]

. 

Then, the probability of diagnosis error is “𝟏. 𝟒𝟐 ×

𝟏𝟎−𝟒”.  

Nominal Pr. (DE)

= 1.68 × 10−5

× 𝐸𝑥𝑝{(ln 30 /1.645)2/2}      

= 1.42 × 10−4                         (10) 

 

- Probability of execution error 

In order to obtain the probability of execution error, 

task analysis using SHERPA was performed, as 

presented in Fig. 6. 

 

As can be seen in Fig. 6, the operators should execute 

several subtasks in order to perform RCS 

depressurization. Based on the data in Tables 2 and 3, 

the probability of execution error was estimated as 

shown in Table 5. 

 

Table 5 The probability of execution error for HFE #2 

 Each task HSP Dependency 

0 
Depressurize 

RCS 
1-E0R0 0.999016 

 

1 

Select the 

primary 

system on the 

operator 

console 

1-E2SSR2SS 0.999984 

Fig. 5 Task analysis by using SHERPA for HFE #1. 

Fig. 6 Task analysis by using SHERPA for HFE #2. 
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2 
Select PZR 

screen 
1-E2SSR2SS 0.999984 

3.1 
Select XXX 

valve on the 

screen 

1-E2DSR2DS 0.999487 

ZD 3.2 
Press 

'acknowledge' 

button 

1-E1R1 0.999926 

3.3 
Press 'open' 

button 

1-

(E1R1+E3R3

+E6R6) 
0.999504 

4.1 
Select YYY 

valve on the 

screen 

1-E2DSR2DS 0.999487 

MD 4.2 
Press 

'acknowledge' 

button 

1-E1R1 0.999926 

4.3 
Press 'open' 

button 

1-

(E1R1+E3R3

+E6R6) 
0.999504 

 Total HSP 9.97 × 10−1  

 Pr. (EE) 3.02 × 10−3  

 

Here, dependency was considered because there were 

two sequential subtasks and there was dependency 

between two sequential subtasks. As shown in Table 

5, the nominal probability of execution error is 

“𝟑. 𝟎𝟐 × 𝟏𝟎−𝟑”. 

 

- Nominal HEP 

The nominal HEP can be calculated by summing the 

probability of diagnosis error and the probability of 

execution error. Then, the nominal HEP is “𝟑. 𝟎𝟑 ×

𝟏𝟎−𝟑”.  

 

5 Discussion and conclusion 

Because a new type of MCR was introduced to the 

APR-1400 in the Republic of Korea, many 

researchers have been concerned with how to assess 

the HEPs in the new environment of that MCR. 

Accordingly, the new frameworks was suggested to 

assess the diagnosis error probabilities and execution 

error probabilities in the digitalized MCR. We expect 

that the HEPs can be calculated in this environment 

using the proposed frameworks. In this paper, the 

proposed frameworks were briefly introduced and 

applied for two selected HFEs: (1) Failure to cool 

down RCS, and (2) Failure to depressurize RCS. 

Here, PSFs were not considered, and only nominal 

HEPs were calculated. As a result of the application, 

the nominal HEPs can be easily obtained using the 

proposed frameworks.  

In the aspect of estimating diagnosis error probability, 

as shown in Fig. 3, it is expected that diagnosis error 

probability provided in the updated TRC model is 

similar to the one provided in the existing TRC 

model. In the aspect of estimating soft control 

execution error probability, this probability will be 

increased because secondary tasks are newly added 
[2]

. 

 

However, even though new frameworks have been 

suggested, the data available to estimate the nominal 

HEPs were limited. Thus, it is difficult to conclude 

that the values provided from the suggested 

frameworks are reasonable and reliable. 

 

Then, in this paper, as preliminary study, the HEP 

calculations were performed to investigate whether or 

not the HEPs can be easily obtained using the 

suggested frameworks. With sufficient data, it will 

surely be possible to provide the reasonable value of 

the HEPs using the proposed frameworks.   
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