

154 Nuclear Safety and Simulation, Vol. 8, Number 2, June 2017

An acceleration technique for 2D method of characteristics

based on Krylov subspace method and CUDA technique

ZHENG Yong
1,2

, and PENG Minjun
1,2*

1. College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China (heupmj@163.com)

2. Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001,

China

Abstract: The method of characteristics (MOC) with matrix form has more favorable performance compared

with its standard application. And the linear algebraic solver affects heavily the computation efficiency. As a

Krylov subspace technique, the preconditioned GMRES(PGMRES) algorithm was proposed to solve the

resulting linear system in previous work. To accelerate the iteration process further, the current study utilizes

the GPU-based CUDA technique to program the massively parallel PGMRES. The sparse matrix vector

multiplication(SpMV), the most time-consuming operation, was optimized using the coherent visiting and

shared memory, which improves the parallel computing performance significantly. Based on the analysis of

the numerical feature of the coefficient matrix, two parallel optimization strategies are proposed to deal with

the first part of the matrix equation, and the different schemes are utilized to the different parts of the matrix

based on the size of row vector, which are expected to improve the throughput of the SpMV operation. Two

benchmark problems(i.e. 2D C5G7 benchmark problem and 2D HTTR benchmark problem) have been

simulated to verify the parallel code and measure the acceleration performance, and the numerical results

demonstrate that the parallel strategies are efficient with or without CMFD method for the C5G7 problem, and

the speedup can achieve more than 5.5 times with the optimal strategy for both the C5G7 and HTTR

benchmark.

Keyword: method of characteristics; neutron transport; preconditioned GMRES; GPU acceleration

1 Introduction
1

The method of characteristics
[1]

 (MOC) has become

the most popular deterministic method to solve the

neutron transport equation due to its excellent

geometrical flexibility and natural parallelism. In the

current reactor physics field, both the commercial

and research-oriented softwares have introduced the

MOC computation module to handle the arbitrary

geometry for 2-D or 3-D neutron transport problems.

For MOC, the computational accuracy can only be

guaranteed using finer flat source regions(FSR) and

dense characteristic tracks, which challenges the

computational efficiency severely. The traditional

source iteration of transport calculation by MOC

needs to sweep these tracks’ information recurrently

in the scattering iterations, and these time-consuming

sweeping operations result in an unacceptable slow

convergence efficiency
[2]

. To reduce the number of

source iterations, some nonlinear diffusion

acceleration techniques, such as coarse mesh finite

difference(CMFD) and coarse mesh rebalance

Received date: April 29 , 2017

(Revised date: June 20, 2017)

method(CMR), have been utilized in many

researches
[3-7]

, and the numerical results have

demonstrated that these coarse mesh methods are

computationally inexpensive and efficient.

Transformed from its traditional tracks sweeping, the

method of characteristics with matrix

form
[8-11]

(MMOC) provides additional possibility to

accelerate the transport calculation. Contrasting with

the recurrent sweepings in the traditional application,

the MMOC sweeps these tracks’ information only

once to construct the coefficient matrix, then the

remaining works are left with the linear algebraic

solver. These nonzero elements in the coefficient

matrix represent the response coefficients between

the boundary angular fluxes and scalar fluxes in the

FSRs. The matrix is only determined by the tracks’

information and cross section library, which means

the matrix will remain unchanged in the process of

source iterations. In MMOC, the unknowns involve

the scalar fluxes of FSRs and boundary incident

angular fluxes. In general, the matrix pattern is

unsymmetric and sparse, therefore the generalized

minimal residual
[12]

(GMRES) method is

An acceleration technique for 2D method of characteristics based on Krylov subspace method and CUDA technique

 Nuclear Safety and Simulation, Vol. 8, Number 2, June 2017 155

implemented to solve the resulting sparse linear

system. Actually, the GMRES has been used widely

to solve the neutron transport problems due to its

excellent performance
[8, 13]

.

The restarted GMRES has the advantages of fast

convergence and good stability, and there are many

sustained efforts to further improve its iteration

efficiency on the algorithm level
[14, 15]

. On the code

level, the development of parallel technique provides

the researchers with a new perspective to accelerate

their programs further, in particular, the

programmable graphics processor unit(GPU) brings

the revolution of parallel computation. Traditional

high performance computing depends on the large

computer system or compute cluster, and all

instructions are executed in the distributed central

processing unit (CPU). These computation platforms

are still too expensive for most researchers.

Contrasting with CPU, the cost of unit computation

of programmable GPU is decreasing sustainedly

while its theoretical float-point operations per

second(FLOPS) is several magnitudes higher than

multicore CPUs
[16]

. In November 2006, NVIDIA

introduced compute unified device architecture

(CUDA), which mitigates dramatically the difficulty

to program on GPU.

There are some relevant researches using the CUDA

technique to accelerate GMRES
[17, 18]

. The kernel and

most time-consuming step is the sparse matrix-vector

multiplication(SpMV), which has been analysed in

the reference [19] in detail. In their researches, the

sparse matrix has uniform nonzeros distribution in

each row in general. However, in order to balance the

load for MMOC case, the additional efforts should

been made to treat the irregular shape of coefficient

matrix as analyzed later.

In this paper, we analysed the computation

complexity of started GMRES based on the feature of

coefficient matrix, and redesigned the CUDA-based

GMRES with the Jacobi preconditioner. For SpMV,

the original version is optimized with the coherence

visiting and shared memory. Starting from this point,

other two optimization strategies are proposed in the

current study. The two proposed methods are verified

and evaluated using two benchmark problems with a

hexagonal complicated geometry, i.e. HTTR

benchmark problem
[20]

 and rectangular geometry, i.e.

OECD/NEA C5G7 MOX benchmark problem
[21]

.

The remainder of this paper is organized as follows:

Section 2 exhibits the methodologies of this study in

detail, including other implemented techniques

unmentioned in introduction; section 3 displays the

numerical experiments for the verification and

evaluation of the proposed acceleration schemes;

section 4 makes the conclusion for the present work.

2 Theoretical model

The current study was carried out with the following

framework: the complete procedure was divided into

several separate modules according to their functions.

The pre-processing module was designed to handle

the input file with a .xml suffix, which was written in

the extensible markup language. The input file

involves the configurations of computation geometry

and other parameters specifying the calculation

conditions as well as the acceleration techniques used

in the following calculations. After the input file

passed the correctness check by this pre-processing

module, the geometry processing and subsequent

matrix construction were performed. The geometry

was represented by constructive solid geometry(CSG)

formula, by which arbitrary complicated geometry

can be represented. The details about geometric

representation and following characteristic line

tracing will not be covered in present paper, and they

can be found in the reference[15].

2.1 Review of matrix characteristics method

After dividing the whole spatial domain into

enormous finer FSRs, the characteristic form of

transport equation can be built for each discrete

neutron flight trajectory:

)()()(sqss
ds

d
t   Σ (1)

where the mark for energy group is eliminated for

simplicity hereafter; 𝑠 is the local coordinate along

the track on X-Y plane; 𝜓 is the neutron angular flux;

𝛴𝑡 is the macro total cross section of material; and 𝑞

is the neutron source including the scattering source

and fission source.

ZHENG Yong, and PENG Minjun

156 Nuclear Safety and Simulation, Vol. 8, Number 2, June 2017

With the assumption that both 𝑞 and 𝛴𝑡 are constants

on the considered FSR 𝑖, the Eq. 1 can be solved

analytically:

    iit

it

i
iit

in
i

out
i s

q
s ,

,

, expexp Σ1
Σ

Σ  (2)

The Eq. 2 indicates that the outgoing angular flux

𝜓𝑖
𝑜𝑢𝑡can be expressed in terms of the incident angular

flux 𝜓𝑖
𝑖𝑛 and neutron source 𝑞𝑖 of the FSR 𝑖 .

Recursively, the outgoing flux of track 𝑘 on any

FSRs can be obtained by its outer boundary incident

angular flux 𝜓𝑘
𝑖𝑛 and the neutron sources 𝑞𝑗 of all

FSRs traversed by the track 𝑘:

  



I

j

Ijjjt

jt

j

I
in
k

out
kI es

q
e

0

0 Σ1
Σ

,,

,

,, exp

(3)

where 0 and 𝐼 denote the ID numbers of the first

FSR and the last FSR traversed by track k,

respectively; 𝑒𝑖,𝑗 is the exponential attenuation

coefficient from region 𝑖 to 𝑗 along the track k:

 1111 ΣΣΣ   jjtiitiitji ssse ,,,, exp  (4)

With the incident and outgoing angular fluxes

𝜓𝑖
𝑖𝑛/𝜓𝑖

𝑜𝑢𝑡, the track's average angular flux 𝜓̅𝑖,𝑘
can

be calculated. Furthermore, the FSR's azimuthal

average angular flux 𝜓̅𝑖,𝑚 can be expressed in terms

of the tracks' average angular flux and the "width'' of

segments. Hence the neutron scalar flux 𝜙𝑖 of FSR

𝑖 can be obtained by taking weighted sum of the

azimuthal average angular flux:

  














k j

jkii qffqf)()()(321  (5)

where 𝑓1 , 𝑓2 and 𝑓3 are the response functions;

𝑞𝑖 is the total neutron source of FSR 𝑖, involving the

scattering source and fission source.

The first matrix equation of desired linear system can

be obtained by splitting the in-group scattering source

term from 𝑞𝑖 and rearranging Eq. 5:

  QSSDS 1111 ΨΦ  (6)

where Φ and Ψ are the unknown vectors of scalar

fluxes and boundary angular fluxes, respectively; 𝑸

is the vector consisted of out-group source term

(including the scattering source from other energy

groups and the fission source); 𝑺1 , 𝑺1
′ are the

coefficient matrices with dimension of 𝑛 × 𝑛 and

𝑛 × 𝑙 , respectively; 𝑺1
′′ can be computed from

sub-matrix 𝑺1 based on the numerical properties
[11]

;

𝑫1 is a diagonal sub-matrix determined by cross

section library; n and l are the number of FSRs and

tracks, respectively.

The additional 𝑚 equations to close the linear

system are obtained by applying the outer boundary

condition to Eq. 2, which will result in:

  QSSES 2222 ΨΦ  (7)

where 𝑺2 , 𝑺2
′ are the coefficient matrices with

dimension of 𝑙 × 𝑛 and 𝑙 × 𝑙, respectively; similarly,

𝑺2
′′ can be obtained from sub-matrix 𝑺2; 𝑬2 is an

unitary matrix which implies the mapping

relationship between tracks on the outer boundaries.

The Eq. 6 and Eq. 7 form the resulting algebraic

system 𝑨𝑥 = 𝑏, where 𝑨 is stored with compress

sparse row (CSR) storage format due to the

considerable sparsity, and all nonzero elements are

stored with single precision float point format to save

the storage space and accelerate computation.

2.2 Analysis of GMRES

It is impractical to solve the resulting linear system

using a direct method because of the enormous

computation burden and unacceptable memory

requirement. Meanwhile, the unsymmetric nonzeros

distribution of the sparse matrix limits the choice of

iterative method to be used. As a variant of Krylov

subspace techniques, the restarted GMRES algorithm

has excellent performance to solve the linear system

in neutron transport field. In particular, its

preconditioning version has more favorable

acceleration performance than its standard application

if the appropriate preconditioner is utilized
[15]

. The

following procedure describes the standard

implementation of the restarted GMRES(m) with left

preconditioning which is used in the current study,

where m is the Krylov subspace dimension:

1. Compute 𝑟 = 1 𝑏 𝑨𝑥 , = ‖𝑟 ‖2, and 1 = 𝑟 ⁄ ;

2. For 𝑗 = , , ,𝑚, Do:

3. Compute 𝑗 = 1𝑨 𝑗;

4. For 𝑖 = , , , 𝑗, Do:

5 𝑖,𝑗 = (𝑗 , 𝑖);

6. 𝑗 = 𝑗 𝑖,𝑗 𝑖;

7. EndDo

8. 𝑗 1,𝑗 = ‖ 𝑗‖2
, if 𝑗 1,𝑗 = set 𝑚 = 𝑗 and go to 11;

9. 𝑗 1 = 𝑗 𝑗 1,𝑗⁄ ;

10. EndDo

11. Define the Heisenberg matrix ̅𝑚 = { 𝑖,𝑗}1 𝑖 𝑚 1,1 𝑗 𝑚
;

12. Compute 𝑚 the minimizer of ‖ 𝑒1 ̅𝑚 ‖2;

13. Compute the latest solution 𝑥𝑚 = 𝑥 𝑚 𝑚;

14. If satisfied then Stop, else set 𝑥 = 𝑥𝑚, and go to 1.

An acceleration technique for 2D method of characteristics based on Krylov subspace method and CUDA technique

 Nuclear Safety and Simulation, Vol. 8, Number 2, June 2017 157

In general, the subspace dimension would be smaller

than 50 for the resulting sparse linear system arisen

from the MMOC case, consequently, the most

time-consuming step is the Arnold loop to construct

the orthogonal basis while the time to yield the least

square solution can be negligible. Moreover, the

frequency to solve the least square problem is much

inferior to the dimension 𝑚 . Based on these

knowledge, the optimization should be focused on the

Arnold loop. Actually, our previous researches have

revealed that the entire iteration efficiency depends on

the cost of orthogonalization. The analysis of

floating-point operations is given as the following.

It is observed that there are 𝑚 SpMVs,

𝑚 𝑚 3 ⁄ vector dot products,

𝑚 𝑚 5 ⁄ vector scaling operations and

𝑚 𝑚 3 ⁄ vector addition operations in each

restart process. Supposing the length of unknown

vector is 𝑁, and the number of nonzero elements in

matrix 𝑨 and 1 are denoted by 𝑛𝑧𝑎 and 𝑛𝑧𝑚 ,

respectively, the expenses to compute the approximate

𝑥𝑚 by the preconditioning GMRES can be evaluated:

taking the sum of above operations of vector-vector

and vector-scalar, there are 𝑚2 7𝑚 4 𝑛

floating-point operations while the number for SpMVs

is 4 𝑚 𝑛𝑧𝑎 𝑛𝑧𝑚 . Define the sparsity as

𝑠𝑝 = 𝑛𝑧𝑎 𝑛𝑧𝑚 𝑛⁄ arguably and a factor 𝑓:

44

32
1

44

472 22











m

mm

m

mm
f

 (8)

where 𝑚 belongs to the range , 5 usually as

mentioned before, hence the value of 𝑓 can be

determined in the range , 6 . It indicates that the

vector operations will require the major time when the

sparsity 𝑠𝑝 is less than 𝑓, otherwise the SpMVs will

dominate the execution time exactly as that happens

ordinarily. Because both the number of tracks

overlaying a FSR and the number of FSRs traversed

by a track are much larger than 26 for common

transport problems, the average number of nonzeros

per row in the coefficient matrix 𝑨 is always more

than 26, hence the ratio 𝑠𝑝 is mostly more than 𝑓

with the subspace dimension less than 50.

It should be noted that the above theoretical analysis

only consider the number of floating-point operations

but neglect the accessing of operands. However, when

the GMRES algorithm is implemented on machine,

the practical hotspot is typically the SpMVs instead of

the vector operations with regular data accessing

pattern. It is because that the SpMVs suffer from the

poor efficiency of fetching data rather than operating

on the operands.

2.3 Optimization of GMRES based on CUDA

In recent years, the programmable GPU has evolved

into a highly parallel, multithreaded and many-core

processor with tremendous computational horsepower

and very high memory bandwidth. In comparison with

CPU, it devotes more transistors to data processing

rather than the data caching and flow control as

illustrated in Fig. 1. The difference in design of CPU

and GPU gives them respective advantages and

weaknesses, therfore the high-performance

applications always take advantage of the

heterogeneous parallel computing using both CPUs

and GPUs: executing the sequential and complex

logical parts on the CPUs and numerically intensive

parts on the GPUs.

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Fig. 1. Usage of transistors of CPU and GPU.

In the current study, a GPU-based GMRES algorithm

written in NVIDIA’s CUDA programming language is

developed to solve the resulting linear system from the

matrix MOC. The mentioned vector operations and

SpMV in subsection 2.2 are programmed as the kernel

functions which run on the device side and the

remaining parts are processed on the host side. As

analyzed above, the performance bottlenecks

encountered by vector operations are much smaller

than the SpMVs, therefore the current paper only

considers the optimization to the SpMV.

The SpMV operation can be divided into two

steps(namely two sub-kernels) as illustrated in

Algorithm 1: firstly the nonzero elements in matrix

𝑨 are multiplied by the corresponding elements in

the vector and the results are kept in a temporary

array 𝑡𝑒𝑚𝑝; then the additive operations for each

row vector are performed with 𝑡𝑒𝑚𝑝. It is known

ZHENG Yong, and PENG Minjun

158 Nuclear Safety and Simulation, Vol. 8, Number 2, June 2017

that the SpMV is memory bound as well as latency

bound due to the irregular memory accessing to the

vector’s elements. In the first sub-kernel, the memory

accessing latency can be hidden efficiently by

massively activated parallel threads. For the second

sub-kernel, the coherence visiting and shared

memory techniques are adopted to reduce the latency

caused by global memory accessing
[18]

. The temporal

array 𝑡𝑒𝑚𝑝 is divided into a number of pieces, and

all operands in the current piece are loaded into a

shared memory at once. It is known that the shared

memory is only visible for the threads residing in the

current block. After data loading, all threads residing

in this block perform the additive operations of

operands simultaneously. This strategy (named as

gpu_cv/sm hereafter) reduces the number of memory

visiting using a large-capacity shared memory.

However, both the theoretical analysis and numerical

experiments indicate that this optimization is only

efficient for the special situation that there are only

fewer nonzeros residing in each row of sparse matrix.

Unfortunately, the sparsity pattern of matrix 𝑨 is

irregular generally as illustrated in Fig. 2 for MMOC,

and there are thousands of nonzeros in some rows

while only dozens of nonzeros in other rows. This

situation indicates that the additive operations on

temporal matrix 𝑡𝑒𝑚𝑝 should be divided into two

parts according to the number of nonzeros per row.

Actually, this discrepancy of nonzeros arises from Eq.

6 and Eq. 7, and the sub-matrix 𝑺1 and 𝑺1
′ have

much more nonzeros than that in 𝑺2 and 𝑺2
′ .

Based on above analysis, it is obvious that different

strategies should be utilized to deal with the different

parts of temporal matrix 𝑡𝑒𝑚𝑝 in the second step for

high-performance due to the difference in nonzeros

for each row. Typically, the first part arisen from Eq.

6 has more nonzeros per row as shown in Fig. 2,

hence the optimization focus is on this part, and the

second part will adopt the coherence visiting and

shared memory technique. There are two strategies

proposed to increase the throughput rate in the

current paper. The first one (named as gpu_thread

hereafter) is that the additive operations for each row

are assigned into only one thread simply, and this

thread accumulates sequentially the nonzeros

belonging to a row of the temporal matrix 𝑡𝑒𝑚𝑝.

Since reduction of the synchronizations and branches

compared with gpu_cv/sm, this method is expected to

achieve a higher FLOPS. Nevertheless, it would

decrease the hardware resource utilization ratio, since

there are only fewer activated threads, usually

equivalent to the number of rows of the coefficient

sub-matrix 𝑺1, i.e. the number of FSRs, while the

CUDA can activate massively available threads

simultaneously. To overcome this drawback, the

second strategy (named as gpu_block hereafter) is

proposed to assign the additive operations of each

row into a block, which consists of a large number of

threads (up to 1024), and the number of threads per

block can be specified by user and be a integer

multiple of the warp size (32 for the current hardware

platform) typically. The parallel reductions are

implemented for the row vector of matrix 𝑡𝑒𝑚𝑝 in

each block, and these operands are loaded into the

shared memory with low latency in advance.

Comparing with the gpu_thread, this method can

achieve the maximum utilization ratio of hardware

resource, although there is the unbalance problem

due to the inevitable variation of row sizes of the

sparse matrix.

Algorithm 1 SpMV with CSR

1: for 𝑖 = : 𝑛𝑧 do ⊳ (Step 1)

2: 𝑡𝑒𝑚𝑝 𝑖 = 𝐴 𝑖 ∗ 𝑥 𝑐𝑜𝑙 𝑖 ;

3: end for

4: for 𝑖 = :𝑁 do ⊳ (Step 2)

5: 𝑖 = . ;

6: 𝑠𝑡𝑎𝑟𝑡 = 𝑟𝑝𝑜𝑠 𝑖 , 𝑒𝑛𝑑 = 𝑟𝑝𝑜𝑠 𝑖 ;

7: for 𝑗 = 𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑 do

8: 𝑖 = 𝑖 𝑡𝑒𝑚𝑝 𝑗 ;

9: end for

10: end for

0 1E4 2E4 3E4 4E4 3.0E5 3.5E5
0

250

500

750

1000

1250

1500

1750

N
o

n
ze

ro
s

C
o

u
n

t

Row

Fig. 2. Distribution for number of nonzeros per row.

An acceleration technique for 2D method of characteristics based on Krylov subspace method and CUDA technique

 Nuclear Safety and Simulation, Vol. 8, Number 2, June 2017 159

3 Numerical experiments and

discussions

In this section, the widely used C5G7 MOX

benchmark problem
[21]

 and the 2D HTTR problem
[20]

are simulated to evaluate the effectiveness of

developed parallel program and measure the

acceleration performance of proposed methods. The

experiment environment parameters are listed in

Table 1. As can be seen, all calculations are

conducted on a workstation with Xeon E5-1620 3.70

GHz CPU and 32 GB RAM. This GPU comprises 13

streaming multiprocessors (SMs, a total of 2 496

CUDA cores), works at a GPU clock rate of 705

MHz and a memory clock rate of 2,600 MHz and has

5.0 GB device memory associated with a unified L2

cache of size 1.25 MB. When compiling the

CUDA-based programs, the GPU architecture is

specified as -arch sm_35.

Table 1. Experiment environment parameters

Parameter Value

CPU Intel Xeon E5-1620

GPU NVIDIA Tesla K20c

Operation System Windows 7 64bit

CUDA Toolkit 6.5

Host compiler Visual C++6.0

CPU codes compilation -O3 option

Float point number Single precision

3.1 The 2D C5G7 MOX benchmark problem

The OECD/NEA 2D C5G7 benchmark problem has

been widely used to verify the deterministic transport

code. This article will not cover the details of the core

configuration and pin cell composition, which can be

found in the reference[21]. Figure 3 gives three flat

source regional discretization schemes for the pin

cells in a fuel assembly and the reflector zone,

respectively.

As can be seen, each pin cell in a fuel assembly

consists of 8 moderator finer regions and 3 or 12

fuel-clad mixture finer regions radially with

equivalent volume. To describe the dramatic gradient

of scalar flux accurately, the finer division scheme in

Fig. 3a is utilized to the outermost fuel cells adjacent

to the reflector and the remainder of fuel cells

implement the coarser discretization scheme as

shown in Fig. 3b. Additionally, the two innermost

reflector cells are divided into 3 × 3 square regions

(i.e. 0.42 cm × 0.42 cm mesh) as illustrated in Fig. 3c

and the remaining reflector cells with dimension of

1.26 cm × 1.26 cm are not subdivided any more.

(a) Finer fuel pin division

(b) Coarser fuel pin division

(c) finer reflector cell division

Fig. 3. Regional divisions of pin cell.

According to the above meshing, the computation

domain comprises 15884 flat source regions

generated by the geometry processing module. With

respect to the discretization direction, there are two

optimal Leonard polar angles
[22]

 in the range

 ~𝜋 ⁄ and 8 azimuthal angles in the range

 ~𝜋 . The spacing of tracks is set as 0.05 cm, in

addition, the convergence criteria of 𝑘𝑒𝑓𝑓 and

fission power are specified as 5 and 6 ,

respectively.

ZHENG Yong, and PENG Minjun

160 Nuclear Safety and Simulation, Vol. 8, Number 2, June 2017

Table 2. Accuracy assessment for C5G7 problem

Parameters value

keff error/pcm -83(±8)*

Average pin power error in each assembly/%

Inner UO2 0.083(±0.101)

MOX 0.080(±0.181)

Outer UO2 -0.534(±0.195)

Specific pin power error/%

Maximum power pin 0.078(±0.163)

Minimum power pin -0.722(±0.582)

Maximum error 1.723(±0.250)

AVG 0.346(±0.324)

RMS 0.426(±0.337)

MRE 0.303(±0.274)

Average sigma factor 2.54

* Number in parentheses denotes the statistical error of

reference solution within 98% confidence interval.

In the current study, regardless of what parallel

strategy is used, the results have the same

computation accuracy finally as shown in Table 2.

Comparing with the results computed by other

famous transport codes given in the reference[21],

the present computational accuracy is acceptable. As

a simple and efficient acceleration technique, the

CMFD technique for rectangular lattice has been

developed as a optional method in present code. The

results show that the computation accuracy is

independent of the CMFD technique, which just

affects the number of source iterations. And there are

9 source iterations required to achieve convergence

when applying the CMFD acceleration technique,

otherwise 60 source iterations. The speedup

performance of CMFD is remarkable for all

computation conditions as illustrated in Table 3.

Table 3. Run time for the C5G7 benchmark problem[s]

 Case CMFD 30* 25 20 15 10 5

cpu 1 W/O** 180.14 164.45 151.51 142.95 147.84 187.24

2 With 26.71 25.83 23.34 21.12 21.70 28.84

gpu_cv/sm 3 W/O 61.24 60.40 60.01 61.30 65.89 84.64

4 With 10.07 9.76 9.59 9.32 10.07 13.38

gpu_thread 5 W/O 34.11 33.90 33.55 33.91 36.41 45.95

6 With 5.64 5.52 5.41 5.23 5.57 7.27

gpu_block 7 W/O 23.02 22.15 22.32 22.20 23.29 27.57

8 With 3.69 3.59 3.54 3.38 3.57 4.47

* The number represents the Krylov subspace dimension;

** It means that the CMFD acceleration is turned off.

Table 3 gives the comparison of computation time in

second when using different subspace dimensions

and parallel strategies. In order to minimize the

uncertainty arisen from operation system, the

calculations are performed three times for each

computational condition, and the results given in

Table 3 are the average value. Because of the

reduction of source iterations with the CMFD scheme,

the computation time is reduced by more than six

times for both the CPU case and the three GPU cases.

It is obvious that the GMRES(m) algorithm will need

more restarting loops if a smaller subspace dimension

is used, because the approximate xm found in the

smaller subspace is more far away from the exact

solution than that found in a larger subspace.

Moreover, the new subspace is hardly orthogonal

with the previous one exactly, so the restarted

GMRES(m) algorithm with a smaller subspace

dimension will need not only more restarting loops

but also more iterations (SpMVs). On the other hand,

the larger subspace dimension means that more

vector operations are performed, and the quadratic

scaling feature doesn't allow one to choose too large

subspace dimension. Based on this analysis, there is

an optimal subspace dimension for each problem, as

shown in Table 3. The influence of subspace

dimension on computation efficiency is more

significant in the CPU versions than that in the GPU

versions, since the time of vectors operations in GPU

versions is ignorable by taking advantage of

massively parallel and the regular accessing to the

memory. Despite this, there is an optimal subspace

dimension 15 arguably for the C5G7 benchmark

problem.

Figure 4 displays the comparison of speedups for

different computation conditions. There is a

An acceleration technique for 2D method of characteristics based on Krylov subspace method and CUDA technique

 Nuclear Safety and Simulation, Vol. 8, Number 2, June 2017 161

considerable difference in speedup among the

implemented parallel strategies. The CMFD method

has little influences on the speedup for each parallel

strategy, the speedups are doubled with the

improvement of parallel strategy. There are some

variations in speedup with the increase of subspace

dimension, it is mainly caused by the CPU cases time

which is more sensitive to the subspace dimension

than GPU cases.

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

 S
p

ee
d
u

p

Subspace dimension

 Case 3 Case 5 Case 7

 Case 4 Case 6 Case 8

Fig. 4. Speedup for difference computation condition.

3.2 The 2D HTTR benchmark problem

This problem is extracted from the reference[20], in

which both the 2D and 3D benchmark problems are

developed to examine the capacity of deterministic

transport code. Its prototype is the experimental High

Temperature Engineering Test Reactor (HTTR),

which was built by JAERI (Japan Atomic Energy

Research Institute) in the late 1990s. The lattice code

HELIOS was used to generate the 6-group

macroscopic cross section library, and the reference

solutions were calculated by MCNP with the

generated cross section library.

Due to the symmetry design, only one sixth of the

core is modeled in present study. There are three

geometry configurations according to the insertion

patterns of the control rods(case 1: all-rods-in; case 2:

partially-controlled; case 3: all-rods-out). Figure 5

gives the geometry configurations of fuel block,

control block and the 1/6 core, all necessary

geometric dimensions are listed in Table 4. There are

four fuel types/enrichments marked with different

colors as illustrated in Fig. 5c, and each fuel block

consists of 33 fuel cells and 3 burnable poison rods as

shown in Fig. 5a. The control rod is annular, and

there is a coolant hole filled with helium at the center

of control rod. Since the helium is not included in the

cross section library of the code HELIOS, the

channels filling with helium are replaced by void in

the current and reference calculations. The

partially-controlled case means that all control rods in

CR3, 4 and 5 are inserted while CR1 and CR2 are

withdrawn as shown in Fig. 5c.

 Burnable posion Graphite Fuel

1 2 3

4 5 6 7 8

9 10 11 12 13 14

15 16 17 18 19

20 21 22 23 24 25

26 27 28 29 30

31 32 33

BP1

BP2

BP3

(a) fuel block

 Control rod Graphite Void

(b) control block

Replaceable reflector block

4

1

CR4

6

CR2

5
3

2

CR5

CR3

CR1

 (c) block indexing in 1/6 core

Fig. 5. Block structure and 1/6 core configuration of HTTR.

Table 4. Simplified HTTR benchmark geometry

parameters

Flat-to-flat core width 436.4768 cm

Flat-to-flat block width 36 cm

Fuel pin (BP rod) pitch 5.15 cm

Fuel pin diameter 4.1 cm

BP rod diameter 1.5 cm

Control rod diameter 12.3 cm

Control rod inner diameter 6.7 cm

Distance from control rod center to block

center

10.8 cm

ZHENG Yong, and PENG Minjun

162 Nuclear Safety and Simulation, Vol. 8, Number 2, June 2017

Figure 6 displays the flat source regions

discretization schemes for the fuel cell, burnable

poison cell and reflector cell. Since the variation of

neutron flux gradient, the discretizations of reflector

cells are different for the replaceable reflector block

and permanent reflector block. There are 18 reflector

cells as shown in Fig. 6c in a replaceable reflector

block between the opposite sides while 16 and 10

reflector cells in the inner and outer permanent

reflector block, respectively. Overall, there are 50 110,

49 670 and 48 916 flat source regions generated in

the one sixth core for three control rods

configurations, respectively. The other discrete

parameters are specified as the previous subsection.

The computation results for the 2D HTTR benchmark

problem are listed in Table 5, and it should be pointed

out that the time does not include the consumptions

of geometry processing and coefficient matrix

construction, and only the time of source iterations

are given here. The results show that the parallel

strategies and the subspace dimension have little or

no influence on the computation accuracy and the

number of source iterations for all three cases, and

the trivial variations of source iterations in the

gpu_block are mainly caused by the loss of

significance when performing the parallel reduction

operations. The linear system solution time depends

upon the Krylov subspace dimension heavily,

especially for the CPU version. For both the

gpu_cv/sm and gpu_thread cases, the dimension no

longer has any pronounced influence on the runtime

when the dimension is greater than 30. This is

because there are more iterations(proportional to the

number of SpMVs) required in the GMRES

algorithm with a smaller dimension. Once the

dimension is greater than 30, the number of GMRES

iterations will hardly change any more and the time

of vector operations in the GMRES algorithm can be

neglected as mentioned before.

Figure 7 displays the comparison of speedups under

different computation conditions for the three

insertion patterns of the HTTR benchmark problem.

There is a tendency that the speedup increases with

the subspace dimension, and this phenomenon results

from the sensitivity of solution time to the dimension

in CPU version while the solution time in GPU case

is practically independent of the dimension greater

than 30 as mentioned above. Since introducing the

uncertainty of the rounding errors when performing

the SpMVs, the speedup tendency of the gpu_block is

not regular like the previous two cases. But overall,

there is a significant improvement in speedup

compared with the previous two cases for all three

control rods configurations.

(a) fuel cell

(b) burnable poison cell

 (c) reflector cell

Fig. 6. Flat source regions partition schemes.

10 20 30 40 50

4

5

6

7

8

9

 Sp
ee

d
u

p

Subspace dimension

All-rods-in All-rods-out Partially-controlled

 cv/sm cv/sm cv/sm

 thread thread thread

 block block block

Fig. 7 Speedups comparison for HTTR benchmark problem.

An acceleration technique for 2D method of characteristics based on Krylov subspace method and CUDA technique

 Nuclear Safety and Simulation, Vol. 8, Number 2, June 2017 163

Table 5. Computation results for 2D HTTR benchmark problem

M*

cpu gpu_cv/sm gpu_thread gpu_block

Error**

/pcm

/pcm

Time/s Itrs.
Error

/pcm

Time/s Itrs.
Error

/pcm

Time/s Itrs.
Error

/pcm

Time/s Itrs.

Case 1: All-rods-in

10 -134.2 3068.02 203 -134.3 852.18 204 -134.3 830.78 204 -133.8 530.43 207

20 -134.3 2832.36 204 -134.3 743.02 204 -134.3 724.78 204 -133.8 487.61 202

30 -134.4 3058.19 205 -134.4 700.96 205 -134.4 684.27 205 -133.9 478.80 207

40 -134.4 3300.69 205 -134.3 692.93 204 -134.3 676.55 204 -134.0 483.65 211

50 -134.4 3678.78 205 -134.3 696.76 204 -134.3 680.03 204 -134.2 480.43 208

Case 2: Partially controlled

10 7.3 3006.82 193 7.3 818.94 194 7.3 805.89 194 7.7 504.99 197

20 7.3 2744.51 194 7.3 692.80 194 7.3 682.32 194 8.0 475.22 200

30 7.3 2962.06 194 7.3 649.27 194 7.3 639.13 194 8.6 467.06 208

40 7.3 3269.36 194 7.3 645.18 194 7.3 635.23 194 7.6 455.08 201

50 7.3 3680.06 194 7.3 645.70 194 7.3 635.91 194 7.6 490.56 220

Case 3: All-rods-out

10 -100.5 3558.87 257 -100.4 975.65 256 -100.4 953.60 256 -98.0 573.69 245

20 -100.4 3056.14 256 -100.5 818.83 257 -100.5 801.45 257 -99.0 538.80 251

30 -100.5 3011.01 257 -100.5 749.14 257 -100.5 732.55 257 -100.1 521.51 255

40 -100.5 3084.66 257 -100.5 749.33 257 -100.5 733.40 257 -97.8 499.69 244

50 -100.5 3237.48 257 -100.5 749.42 257 -100.5 733.21 257 -98.9 520.32 252

* The M represents the subspace dimension;

** The error represents the relative error of 𝑘𝑒𝑓𝑓 comparing with the reference solution.

4 Conclusion

In this paper, the preconditioned GMRES algorithm

was implemented to solve the resulting sparse linear

system arisen from the MMOC method. To find the

hotspot, the computation complexity of the algorithm

has been analyzed, and the theoretical result shows

that the SpMV operations require the majority of

runtime with the typical Krylov subspace dimension.

The GPU-based CUDA technique was utilized to

accelerate the linear system solution process using

the coherent accessing and shared memory technique.

However, the feature of coefficient matrix would

decrease the throughput rate of parallel code,

especially the SpMV operation, since there is the

difference in the row size of the coefficient matrix.

Based on this knowledge, another two optimal

parallel strategies focusing on the first part of the

matrix are proposed to perform the accumulation

operations of a row vector within a thread and threads

block, respectively. The C5G7 benchmark problem

and the 2D HTTR hexagonal benchmark problem

have been simulated to verify the parallel code and

valuate the acceleration performance of the proposed

methods. The results indicate that the parallel

strategies have no pronounced influence on the

computation accuracy, and the proposed optimal

schemes have higher speedups, in particular, the

second scheme has a remarkable improvement with

respect to the acceleration performance since more

hardware resource was utilized than the first optimal

scheme.

References
[1] ASKEW, J. R.: A characteristics formulation of the

neutron transport equation in complicated geometrys,

United Kingdom Atomic Energy Authority Reactor

Group,1972.

[2] ZHANG, Z., LI, Q., and WANG, K.: Parallelization

method for three dimensional MOC calculation, Atomic

Energy Science and Technology, 2013, 47(Suppl.): 38-42.

(In Chinese)

[3] CHO, J. Y., KIM, K. S., SHIM, H. J., SONG, J. S., LEE,

C.-C., and JOO, H. G.: Whole Core Transport

Calculation Employing Hexagonal Modular Ray Tracing

and CMFD Formulation, Journal of Nuclear Science and

Technology, 2008, 45(8): 740-751.

[4] HAN, Y., JIANG, X., and WANG, D.: CMFD and GPU

acceleration on method of characteristics for hexagonal

cores, Nuclear Engineering and Design, 2014, 280:

210-222.

ZHENG Yong, and PENG Minjun

164 Nuclear Safety and Simulation, Vol. 8, Number 2, June 2017

[5] TANG, C., and ZHANG, S.: Development and

verification of an MOC code employing assembly

modular ray tracing and efficient acceleration techniques,

Annals of Nuclear Energy, 2009, 36(8): 1013-1020.

[6] CAI, X., YAO, D., and WANG, K., et al.: Generalized

coarse-mesh finite difference acceleration for method of

characteristics in unstructured meshes, Chinese Journal

of Computational Physics, 2010, 27(4): 541-546. (In

Chinese)

[7] YAMAMOTO, A.: Generalized Coarse-Mesh Rebalance

Method for Acceleration of Neutron Transport

Calculations, Nuclear Science and Engineering, 2005,

151: 274-282.

[8] ZHANG, H., WU, H., and CAO, L.: An acceleration

technique for 2D MOC based on Krylov subspace and

domain decomposition methods, Annals of Nuclear

Energy, 2011, 38(12): 2742-2751.

[9] ZHANG, H., ZHENG, Y., WU, H., and CAO, L.: A

2D/1D coupling neutron transport method based on the

matrix MOC and NEM methods. In: International

Conference on Mathematics and Computational Methods

Applied To Nuclear Science and Engineering. Sun Valley,

United Stated. 2013.

[10] LIU, Z., COLLINS, B., KOCHUNAS, B., DOWNAR, T.,

XU, Y., and WU, H.: Theory and analysis of accuracy for

the method of characteristics direction probabilities with

boundary averaging, Annals of Nuclear Energy, 2015, 77:

212-222.

[11] WU, W., LI, Q., and WANG, K.: Matrix method of

characteristics based on modular ray tracing, Nuclear

Power Engineering, 2014, 35(3): 129-132. (In Chinese)

[12] SAAD, Y., and H.SCHULTZ, M.: A generalized minimal

residual algorithm for solving nonsymmetric linear

systems, SIAM Journal on scientific and statistical

computing, 1986, 7(3): 856-869. TURCKSIN, B.,

RAGUSA, J. C., and MOREL, J. E.: Angular Multigrid

Preconditioner for Krylov-Based Solution Techniques

Applied to theSnEquations with Highly Forward-Peaked

Scattering, Transport Theory and Statistical Physics,

2012, 41(1-2): 1-22.

[13] TAKEDA, S., and KITADA, T.: Development of efficient

Krylov preconditioning techniques for multi-dimensional

method of characteristics, Journal of Nuclear Science and

Technology, 2012, 49(4): 457-465.

[14] ZHENG, Y., PENG, M., and XIA, G.: Development and

verification of MOC code based on Krylov subspace and

efficient preconditioning techniques, Annals of Nuclear

Energy, 2017, 99: 427-433.

[15] [NVIDIA: CUDA C Programming Guide, NVIDIA

Corporation,2016.

[16] RAPHAEL, C., and STEPHANE, D.: Sparse systems

solving on GPUs with GMRES, J. Supercomput., 2012,

59(3): 1504-1516.

[17] LIU, Y., YIN, K., and WU, E.: Fast gmres-gpu solver for

large scale sparse linear systems, Journal of

Computer-Aided Design and Computer Graphics, 2011,

23(4): 553-560. (In Chinese)

[18] BELL, N., and GARLAND, M.: Efficient sparse

matrix-vector multiplication on CUDA, NVIDIA

Corporation,2008.

[19] ZHANG, Z., RAHNEMA, F., ZHANG, D., POUNDERS,

J. M., and OUGOUAG, A. M.: Simplified two and three

dimensional HTTR benchmark problems, Annals of

Nuclear Energy, 2011, 38(5): 1172-1185.

[20] NEA/OECD: Benchmark on Deterministic Transport

Calculations Without Spatial Homogenisation(A 2-D/3-D

MOX Fuel Assembly Benchmark), Nuclear Energy

Agency/Organization for Economic Co-operation and

Development,2003.

[21] LEONARD, A., and MCDANIEL, C. T.: Optimal polar

angles and weights for the characteristics method,

Transactions of the American Nuclear Society, 1995, 73:

172-173.

