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Abstract: The method of characteristics (MOC) with matrix form has more favorable performance compared 

with its standard application. And the linear algebraic solver affects heavily the computation efficiency. As a 

Krylov subspace technique, the preconditioned GMRES(PGMRES) algorithm was proposed to solve the 

resulting linear system in previous work. To accelerate the iteration process further, the current study utilizes 

the GPU-based CUDA technique to program the massively parallel PGMRES. The sparse matrix vector 

multiplication(SpMV), the most time-consuming operation, was optimized using the coherent visiting and 

shared memory, which improves the parallel computing performance significantly. Based on the analysis of 

the numerical feature of the coefficient matrix, two parallel optimization strategies are proposed to deal with 

the first part of the matrix equation, and the different schemes are utilized to the different parts of the matrix 

based on the size of row vector, which are expected to improve the throughput of the SpMV operation. Two 

benchmark problems(i.e. 2D C5G7 benchmark problem and 2D HTTR benchmark problem) have been 

simulated to verify the parallel code and measure the acceleration performance, and the numerical results 

demonstrate that the parallel strategies are efficient with or without CMFD method for the C5G7 problem, and 

the speedup can achieve more than 5.5 times with the optimal strategy for both the C5G7 and HTTR 

benchmark.  
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1 Introduction
1
 

The method of characteristics
[1]

 (MOC) has become 

the most popular deterministic method to solve the 

neutron transport equation due to its excellent 

geometrical flexibility and natural parallelism. In the 

current reactor physics field, both the commercial 

and research-oriented softwares have introduced the 

MOC computation module to handle the arbitrary 

geometry for 2-D or 3-D neutron transport problems. 

For MOC, the computational accuracy can only be 

guaranteed using finer flat source regions(FSR) and 

dense characteristic tracks, which challenges the 

computational efficiency severely. The traditional 

source iteration of transport calculation by MOC 

needs to sweep these tracks’ information recurrently 

in the scattering iterations, and these time-consuming 

sweeping operations result in an unacceptable slow 

convergence efficiency
[2]

. To reduce the number of 

source iterations, some nonlinear diffusion 

acceleration techniques, such as coarse mesh finite 

difference(CMFD) and coarse mesh rebalance 
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method(CMR), have been utilized in many 

researches
[3-7]

, and the numerical results have 

demonstrated that these coarse mesh methods are 

computationally inexpensive and efficient. 

 

Transformed from its traditional tracks sweeping, the 

method of characteristics with matrix 

form
[8-11]

(MMOC) provides additional possibility to 

accelerate the transport calculation. Contrasting with 

the recurrent sweepings in the traditional application, 

the MMOC sweeps these tracks’ information only 

once to construct the coefficient matrix, then the 

remaining works are left with the linear algebraic 

solver. These nonzero elements in the coefficient 

matrix represent the response coefficients between 

the boundary angular fluxes and scalar fluxes in the 

FSRs. The matrix is only determined by the tracks’ 

information and cross section library, which means 

the matrix will remain unchanged in the process of 

source iterations. In MMOC, the unknowns involve 

the scalar fluxes of FSRs and boundary incident 

angular fluxes. In general, the matrix pattern is 

unsymmetric and sparse, therefore the generalized 

minimal residual
[12]

(GMRES) method is 
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implemented to solve the resulting sparse linear 

system. Actually, the GMRES has been used widely 

to solve the neutron transport problems due to its 

excellent performance
[8, 13]

. 

 

The restarted GMRES has the advantages of fast 

convergence and good stability, and there are many 

sustained efforts to further improve its iteration 

efficiency on the algorithm level
[14, 15]

. On the code 

level, the development of parallel technique provides 

the researchers with a new perspective to accelerate 

their programs further, in particular, the 

programmable graphics processor unit(GPU) brings 

the revolution of parallel computation. Traditional 

high performance computing depends on the large 

computer system or compute cluster, and all 

instructions are executed in the distributed central 

processing unit (CPU). These computation platforms 

are still too expensive for most researchers. 

Contrasting with CPU, the cost of unit computation 

of programmable GPU is decreasing sustainedly 

while its theoretical float-point operations per 

second(FLOPS) is several magnitudes higher than 

multicore CPUs
[16]

. In November 2006, NVIDIA 

introduced compute unified device architecture 

(CUDA), which mitigates dramatically the difficulty 

to program on GPU. 

 

There are some relevant researches using the CUDA 

technique to accelerate GMRES
[17, 18]

. The kernel and 

most time-consuming step is the sparse matrix-vector 

multiplication(SpMV), which has been analysed in 

the reference [19] in detail. In their researches, the 

sparse matrix has uniform nonzeros distribution in 

each row in general. However, in order to balance the 

load for MMOC case, the additional efforts should 

been made to treat the irregular shape of coefficient 

matrix as analyzed later. 

 

In this paper, we analysed the computation 

complexity of started GMRES based on the feature of 

coefficient matrix, and redesigned the CUDA-based 

GMRES with the Jacobi preconditioner. For SpMV, 

the original version is optimized with the coherence 

visiting and shared memory. Starting from this point, 

other two optimization strategies are proposed in the 

current study. The two proposed methods are verified 

and evaluated using two benchmark problems with a 

hexagonal complicated geometry, i.e. HTTR 

benchmark problem
[20]

 and rectangular geometry, i.e. 

OECD/NEA C5G7 MOX benchmark problem
[21]

. 

 

The remainder of this paper is organized as follows: 

Section 2 exhibits the methodologies of this study in 

detail, including other implemented techniques 

unmentioned in introduction; section 3 displays the 

numerical experiments for the verification and 

evaluation of the proposed acceleration schemes; 

section 4 makes the conclusion for the present work.  

 

2 Theoretical model 

The current study was carried out with the following 

framework: the complete procedure was divided into 

several separate modules according to their functions. 

The pre-processing module was designed to handle 

the input file with a .xml suffix, which was written in 

the extensible markup language. The input file 

involves the configurations of computation geometry 

and other parameters specifying the calculation 

conditions as well as the acceleration techniques used 

in the following calculations. After the input file 

passed the correctness check by this pre-processing 

module, the geometry processing and subsequent 

matrix construction were performed. The geometry 

was represented by constructive solid geometry(CSG) 

formula, by which arbitrary complicated geometry 

can be represented. The details about geometric 

representation and following characteristic line 

tracing will not be covered in present paper, and they 

can be found in the reference[15]. 

 

2.1 Review of matrix characteristics method 

After dividing the whole spatial domain into 

enormous finer FSRs, the characteristic form of 

transport equation can be built for each discrete 

neutron flight trajectory: 

)()()( sqss
ds

d
t   Σ         (1) 

where the mark for energy group is eliminated for 

simplicity hereafter; 𝑠 is the local coordinate along 

the track on X-Y plane; 𝜓 is the neutron angular flux; 

𝛴𝑡 is the macro total cross section of material; and 𝑞 

is the neutron source including the scattering source 

and fission source. 
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With the assumption that both 𝑞 and 𝛴𝑡  are constants 

on the considered FSR 𝑖, the Eq. 1 can be solved 

analytically: 
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The Eq. 2 indicates that the outgoing angular flux 

𝜓𝑖
𝑜𝑢𝑡can be expressed in terms of the incident angular 

flux 𝜓𝑖
𝑖𝑛 and neutron source 𝑞𝑖 of the FSR 𝑖 . 

Recursively, the outgoing flux of track 𝑘  on any 

FSRs can be obtained by its outer boundary incident 

angular flux 𝜓𝑘
𝑖𝑛 and the neutron sources 𝑞𝑗 of all 

FSRs traversed by the track 𝑘: 
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where 0 and 𝐼 denote the ID numbers of the first 

FSR and the last FSR traversed by track k, 

respectively; 𝑒𝑖,𝑗  is the exponential attenuation 

coefficient from region 𝑖 to 𝑗 along the track k: 

 1111 ΣΣΣ   jjtiitiitji ssse ,,,, exp     (4) 

With the incident and outgoing angular fluxes 

𝜓𝑖
𝑖𝑛/𝜓𝑖

𝑜𝑢𝑡, the track's average angular flux 𝜓̅𝑖,𝑘 
can 

be calculated. Furthermore, the FSR's azimuthal 

average angular flux 𝜓̅𝑖,𝑚 can be expressed in terms 

of the tracks' average angular flux and the "width'' of 

segments. Hence the neutron scalar flux 𝜙𝑖 of FSR 

𝑖 can be obtained by taking weighted sum of the 

azimuthal average angular flux: 
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where 𝑓1 , 𝑓2  and  𝑓3  are the response functions; 

𝑞𝑖  is the total neutron source of FSR 𝑖, involving the 

scattering source and fission source. 

 

The first matrix equation of desired linear system can 

be obtained by splitting the in-group scattering source 

term from 𝑞𝑖  and rearranging Eq. 5: 

  QSSDS 1111 ΨΦ         (6) 

where Φ and Ψ are the unknown vectors of scalar 

fluxes and boundary angular fluxes, respectively; 𝑸 

is the vector consisted of out-group source term 

(including the scattering source from other energy 

groups and the fission source); 𝑺1 , 𝑺1
′  are the 

coefficient matrices with dimension of 𝑛 × 𝑛  and 

𝑛 × 𝑙 , respectively; 𝑺1
′′  can be computed from 

sub-matrix 𝑺1 based on the numerical properties
[11]

; 

𝑫1  is a diagonal sub-matrix determined by cross 

section library; n and l are the number of FSRs and 

tracks, respectively. 

 

The additional 𝑚  equations to close the linear 

system are obtained by applying the outer boundary 

condition to Eq. 2, which will result in: 

  QSSES 2222 ΨΦ          (7) 

where 𝑺2 , 𝑺2
′  are the coefficient matrices with 

dimension of 𝑙 × 𝑛 and 𝑙 × 𝑙, respectively; similarly, 

𝑺2
′′ can be obtained from sub-matrix 𝑺2; 𝑬2 is an 

unitary matrix which implies the mapping 

relationship between tracks on the outer boundaries. 

The Eq. 6 and Eq. 7 form the resulting algebraic 

system 𝑨𝑥 = 𝑏, where 𝑨 is stored with compress 

sparse row (CSR) storage format due to the 

considerable sparsity, and all nonzero elements are 

stored with single precision float point format to save 

the storage space and accelerate computation. 

 

2.2 Analysis of GMRES 

It is impractical to solve the resulting linear system 

using a direct method because of the enormous 

computation burden and unacceptable memory 

requirement. Meanwhile, the unsymmetric nonzeros 

distribution of the sparse matrix limits the choice of 

iterative method to be used. As a variant of Krylov 

subspace techniques, the restarted GMRES algorithm 

has excellent performance to solve the linear system 

in neutron transport field. In particular, its 

preconditioning version has more favorable 

acceleration performance than its standard application 

if the appropriate preconditioner is utilized
[15]

. The 

following procedure describes the standard 

implementation of the restarted GMRES(m) with left 

preconditioning which is used in the current study, 

where m is the Krylov subspace dimension: 

 
1. Compute 𝑟 =   1 𝑏  𝑨𝑥  ,  = ‖𝑟 ‖2, and  1 = 𝑟  ⁄ ; 

2. For 𝑗 =  ,  , ,𝑚, Do: 

3.   Compute  𝑗 =   1𝑨 𝑗; 

4.   For 𝑖 =  ,  , , 𝑗, Do: 

5   𝑖,𝑗 = ( 𝑗 ,  𝑖); 

6.    𝑗 =  𝑗   𝑖,𝑗 𝑖; 

7.  EndDo 

8.   𝑗 1,𝑗 = ‖ 𝑗‖2
, if  𝑗 1,𝑗 =   set 𝑚 = 𝑗 and go to 11; 

9.   𝑗 1 =  𝑗  𝑗 1,𝑗⁄ ; 

10. EndDo 

11. Define the Heisenberg matrix  ̅𝑚 = { 𝑖,𝑗}1 𝑖 𝑚 1,1 𝑗 𝑚
; 

12. Compute  𝑚 the minimizer of ‖ 𝑒1   ̅𝑚 ‖2; 

13. Compute the latest solution 𝑥𝑚 = 𝑥   𝑚 𝑚; 

14. If satisfied then Stop, else set 𝑥 = 𝑥𝑚, and go to 1. 
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In general, the subspace dimension would be smaller 

than 50 for the resulting sparse linear system arisen 

from the MMOC case, consequently, the most 

time-consuming step is the Arnold loop to construct 

the orthogonal basis while the time to yield the least 

square solution can be negligible. Moreover, the 

frequency to solve the least square problem is much 

inferior to the dimension 𝑚 . Based on these 

knowledge, the optimization should be focused on the 

Arnold loop. Actually, our previous researches have 

revealed that the entire iteration efficiency depends on 

the cost of orthogonalization. The analysis of 

floating-point operations is given as the following. 

 

It is observed that there are   𝑚     SpMVs, 

𝑚 𝑚  3  ⁄    vector dot products, 

𝑚 𝑚  5  ⁄    vector scaling operations and 

𝑚 𝑚  3  ⁄    vector addition operations in each 

restart process. Supposing the length of unknown 

vector is 𝑁, and the number of nonzero elements in 

matrix 𝑨 and   1  are denoted by 𝑛𝑧𝑎  and 𝑛𝑧𝑚 , 

respectively, the expenses to compute the approximate 

𝑥𝑚 by the preconditioning GMRES can be evaluated: 

taking the sum of above operations of vector-vector 

and vector-scalar, there are   𝑚2  7𝑚  4 𝑛 

floating-point operations while the number for SpMVs 

is 4 𝑚     𝑛𝑧𝑎  𝑛𝑧𝑚 . Define the sparsity as 

𝑠𝑝 =  𝑛𝑧𝑎  𝑛𝑧𝑚 𝑛⁄  arguably and a factor 𝑓: 
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where 𝑚  belongs to the range   , 5   usually as 

mentioned before, hence the value of 𝑓  can be 

determined in the range   ,  6 . It indicates that the 

vector operations will require the major time when the 

sparsity 𝑠𝑝 is less than 𝑓, otherwise the SpMVs will 

dominate the execution time exactly as that happens 

ordinarily. Because both the number of tracks 

overlaying a FSR and the number of FSRs traversed 

by a track are much larger than 26 for common 

transport problems, the average number of nonzeros 

per row in the coefficient matrix 𝑨 is always more 

than 26, hence the ratio 𝑠𝑝 is mostly more than 𝑓 

with the subspace dimension less than 50. 

 

It should be noted that the above theoretical analysis 

only consider the number of floating-point operations 

but neglect the accessing of operands. However, when 

the GMRES algorithm is implemented on machine, 

the practical hotspot is typically the SpMVs instead of 

the vector operations with regular data accessing 

pattern. It is because that the SpMVs suffer from the 

poor efficiency of fetching data rather than operating 

on the operands. 

 

2.3 Optimization of GMRES based on CUDA 

In recent years, the programmable GPU has evolved 

into a highly parallel, multithreaded and many-core 

processor with tremendous computational horsepower 

and very high memory bandwidth. In comparison with 

CPU, it devotes more transistors to data processing 

rather than the data caching and flow control as 

illustrated in Fig. 1. The difference in design of CPU 

and GPU gives them respective advantages and 

weaknesses, therfore the high-performance 

applications always take advantage of the 

heterogeneous parallel computing using both CPUs 

and GPUs: executing the sequential and complex 

logical parts on the CPUs and numerically intensive 

parts on the GPUs. 

 

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU
 

Fig. 1. Usage of transistors of CPU and GPU. 

 

In the current study, a GPU-based GMRES algorithm 

written in NVIDIA’s CUDA programming language is 

developed to solve the resulting linear system from the 

matrix MOC. The mentioned vector operations and 

SpMV in subsection 2.2 are programmed as the kernel 

functions which run on the device side and the 

remaining parts are processed on the host side. As 

analyzed above, the performance bottlenecks 

encountered by vector operations are much smaller 

than the SpMVs, therefore the current paper only 

considers the optimization to the SpMV. 

 

The SpMV operation can be divided into two 

steps(namely two sub-kernels) as illustrated in 

Algorithm 1: firstly the nonzero elements in matrix 

𝑨 are multiplied by the corresponding elements in 

the vector and the results are kept in a temporary 

array 𝑡𝑒𝑚𝑝; then the additive operations for each 

row vector are performed with 𝑡𝑒𝑚𝑝. It is known 
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that the SpMV is memory bound as well as latency 

bound due to the irregular memory accessing to the 

vector’s elements. In the first sub-kernel, the memory 

accessing latency can be hidden efficiently by 

massively activated parallel threads. For the second 

sub-kernel, the coherence visiting and shared 

memory techniques are adopted to reduce the latency 

caused by global memory accessing
[18]

. The temporal 

array 𝑡𝑒𝑚𝑝 is divided into a number of pieces, and 

all operands in the current piece are loaded into a 

shared memory at once. It is known that the shared 

memory is only visible for the threads residing in the 

current block. After data loading, all threads residing 

in this block perform the additive operations of 

operands simultaneously. This strategy (named as 

gpu_cv/sm hereafter) reduces the number of memory 

visiting using a large-capacity shared memory. 

However, both the theoretical analysis and numerical 

experiments indicate that this optimization is only 

efficient for the special situation that there are only 

fewer nonzeros residing in each row of sparse matrix. 

Unfortunately, the sparsity pattern of matrix 𝑨 is 

irregular generally as illustrated in Fig. 2 for MMOC, 

and there are thousands of nonzeros in some rows 

while only dozens of nonzeros in other rows. This 

situation indicates that the additive operations on 

temporal matrix 𝑡𝑒𝑚𝑝 should be divided into two 

parts according to the number of nonzeros per row. 

Actually, this discrepancy of nonzeros arises from Eq. 

6 and Eq. 7, and the sub-matrix 𝑺1 and 𝑺1
′  have 

much more nonzeros than that in 𝑺2 and 𝑺2
′ . 

 

Based on above analysis, it is obvious that different 

strategies should be utilized to deal with the different 

parts of temporal matrix 𝑡𝑒𝑚𝑝 in the second step for 

high-performance due to the difference in nonzeros 

for each row. Typically, the first part arisen from Eq. 

6 has more nonzeros per row as shown in Fig. 2, 

hence the optimization focus is on this part, and the 

second part will adopt the coherence visiting and 

shared memory technique. There are two strategies 

proposed to increase the throughput rate in the 

current paper. The first one (named as gpu_thread 

hereafter) is that the additive operations for each row 

are assigned into only one thread simply, and this 

thread accumulates sequentially the nonzeros 

belonging to a row of the temporal matrix 𝑡𝑒𝑚𝑝. 

Since reduction of the synchronizations and branches 

compared with gpu_cv/sm, this method is expected to 

achieve a higher FLOPS. Nevertheless, it would 

decrease the hardware resource utilization ratio, since 

there are only fewer activated threads, usually 

equivalent to the number of rows of the coefficient 

sub-matrix 𝑺1, i.e. the number of FSRs, while the 

CUDA can activate massively available threads 

simultaneously. To overcome this drawback, the 

second strategy (named as gpu_block hereafter) is 

proposed to assign the additive operations of each 

row into a block, which consists of a large number of 

threads (up to 1024), and the number of threads per 

block can be specified by user and be a integer 

multiple of the warp size (32 for the current hardware 

platform) typically. The parallel reductions are 

implemented for the row vector of matrix 𝑡𝑒𝑚𝑝 in 

each block, and these operands are loaded into the 

shared memory with low latency in advance. 

Comparing with the gpu_thread, this method can 

achieve the maximum utilization ratio of hardware 

resource, although there is the unbalance problem 

due to the inevitable variation of row sizes of the 

sparse matrix. 

 

Algorithm 1 SpMV with CSR 

1: for 𝑖 =  : 𝑛𝑧 do ⊳ (Step 1) 

2:    𝑡𝑒𝑚𝑝 𝑖 = 𝐴 𝑖 ∗ 𝑥 𝑐𝑜𝑙 𝑖  ;  

3: end for  

4: for 𝑖 =  :𝑁 do ⊳ (Step 2) 

5:      𝑖 =  . ;  

6:    𝑠𝑡𝑎𝑟𝑡 = 𝑟𝑝𝑜𝑠 𝑖 , 𝑒𝑛𝑑 = 𝑟𝑝𝑜𝑠 𝑖    ;  

7:    for 𝑗 = 𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑    do  

8:          𝑖 =   𝑖  𝑡𝑒𝑚𝑝 𝑗 ;  

9:    end for  

10: end for  
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Fig. 2. Distribution for number of nonzeros per row. 
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3 Numerical experiments and 

discussions 

In this section, the widely used C5G7 MOX 

benchmark problem
[21]

 and the 2D HTTR problem
[20]

 

are simulated to evaluate the effectiveness of 

developed parallel program and measure the 

acceleration performance of proposed methods. The 

experiment environment parameters are listed in 

Table 1. As can be seen, all calculations are 

conducted on a workstation with Xeon E5-1620 3.70 

GHz CPU and 32 GB RAM. This GPU comprises 13 

streaming multiprocessors (SMs, a total of 2 496 

CUDA cores), works at a GPU clock rate of 705 

MHz and a memory clock rate of 2,600 MHz and has 

5.0 GB device memory associated with a unified L2 

cache of size 1.25 MB. When compiling the 

CUDA-based programs, the GPU architecture is 

specified as -arch sm_35. 

 
Table 1. Experiment environment parameters 

Parameter  Value 

CPU Intel Xeon E5-1620 

GPU NVIDIA Tesla K20c 

Operation System  Windows 7 64bit 

CUDA  Toolkit 6.5 

Host compiler Visual C++6.0 

CPU codes compilation  -O3 option 

Float point number  Single precision 

 

3.1 The 2D C5G7 MOX benchmark problem 

The OECD/NEA 2D C5G7 benchmark problem has 

been widely used to verify the deterministic transport 

code. This article will not cover the details of the core 

configuration and pin cell composition, which can be 

found in the reference[21]. Figure 3 gives three flat 

source regional discretization schemes for the pin 

cells in a fuel assembly and the reflector zone, 

respectively. 

 

As can be seen, each pin cell in a fuel assembly 

consists of 8 moderator finer regions and 3 or 12 

fuel-clad mixture finer regions radially with 

equivalent volume. To describe the dramatic gradient 

of scalar flux accurately, the finer division scheme in 

Fig. 3a is utilized to the outermost fuel cells adjacent 

to the reflector and the remainder of fuel cells 

implement the coarser discretization scheme as 

shown in Fig. 3b. Additionally, the two innermost 

reflector cells are divided into 3 × 3 square regions 

(i.e. 0.42 cm × 0.42 cm mesh) as illustrated in Fig. 3c 

and the remaining reflector cells with dimension of 

1.26 cm × 1.26 cm are not subdivided any more. 

 
(a) Finer fuel pin division  

 
(b) Coarser fuel pin division  

 
(c) finer reflector cell division  

Fig. 3. Regional divisions of pin cell. 

 

According to the above meshing, the computation 

domain comprises 15884 flat source regions 

generated by the geometry processing module. With 

respect to the discretization direction, there are two 

optimal Leonard polar angles
[22]

 in the range 

  ~𝜋  ⁄   and 8 azimuthal angles in the range 

  ~𝜋 . The spacing of tracks is set as 0.05 cm, in 

addition, the convergence criteria of 𝑘𝑒𝑓𝑓  and 

fission power are specified as    5  and    6 , 

respectively. 
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Table 2. Accuracy assessment for C5G7 problem 

Parameters  value  

keff error/pcm -83(±8)* 

Average pin power error in each assembly/% 

Inner UO2 0.083(±0.101) 

MOX 0.080(±0.181) 

Outer UO2 -0.534(±0.195) 

Specific pin power error/% 

Maximum power pin 0.078(±0.163) 

Minimum power pin -0.722(±0.582) 

Maximum error 1.723(±0.250) 

AVG 0.346(±0.324) 

RMS 0.426(±0.337) 

MRE 0.303(±0.274) 

Average sigma factor  2.54 

* Number in parentheses denotes the statistical error of 

reference solution within 98% confidence interval. 

In the current study, regardless of what parallel 

strategy is used, the results have the same 

computation accuracy finally as shown in Table 2. 

Comparing with the results computed by other 

famous transport codes given in the reference[21], 

the present computational accuracy is acceptable. As 

a simple and efficient acceleration technique, the 

CMFD technique for rectangular lattice has been 

developed as a optional method in present code. The 

results show that the computation accuracy is 

independent of the CMFD technique, which just 

affects the number of source iterations. And there are 

9 source iterations required to achieve convergence 

when applying the CMFD acceleration technique, 

otherwise 60 source iterations. The speedup 

performance of CMFD is remarkable for all 

computation conditions as illustrated in Table 3. 

 
Table 3. Run time for the C5G7 benchmark problem[s] 

 Case CMFD 30* 25 20 15 10 5 

cpu 1 W/O** 180.14 164.45 151.51 142.95 147.84 187.24 

2 With 26.71 25.83 23.34 21.12 21.70 28.84 

gpu_cv/sm 3 W/O 61.24 60.40 60.01 61.30 65.89 84.64 

4 With 10.07 9.76 9.59 9.32 10.07 13.38 

gpu_thread 5 W/O 34.11 33.90 33.55 33.91 36.41 45.95 

6 With 5.64 5.52 5.41 5.23 5.57 7.27 

gpu_block 7 W/O 23.02 22.15 22.32 22.20 23.29 27.57 

8 With 3.69 3.59 3.54 3.38 3.57 4.47 

*  The number represents the Krylov subspace dimension; 

** It means that the CMFD acceleration is turned off. 

 

Table 3 gives the comparison of computation time in 

second when using different subspace dimensions 

and parallel strategies. In order to minimize the 

uncertainty arisen from operation system, the 

calculations are performed three times for each 

computational condition, and the results given in 

Table 3 are the average value. Because of the 

reduction of source iterations with the CMFD scheme, 

the computation time is reduced by more than six 

times for both the CPU case and the three GPU cases.  

 

It is obvious that the GMRES(m) algorithm will need 

more restarting loops if a smaller subspace dimension 

is used, because the approximate xm found in the 

smaller subspace is more far away from the exact 

solution than that found in a larger subspace. 

Moreover, the new subspace is hardly orthogonal 

with the previous one exactly, so the restarted 

GMRES(m) algorithm with a smaller subspace 

dimension will need not only more restarting loops 

but also more iterations (SpMVs). On the other hand, 

the larger subspace dimension means that more 

vector operations are performed, and the quadratic 

scaling feature doesn't allow one to choose too large 

subspace dimension. Based on this analysis, there is 

an optimal subspace dimension for each problem, as 

shown in Table 3. The influence of subspace 

dimension on computation efficiency is more 

significant in the CPU versions than that in the GPU 

versions, since the time of vectors operations in GPU 

versions is ignorable by taking advantage of 

massively parallel and the regular accessing to the 

memory. Despite this, there is an optimal subspace 

dimension 15 arguably for the C5G7 benchmark 

problem. 

 

Figure 4 displays the comparison of speedups for 

different computation conditions. There is a 
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considerable difference in speedup among the 

implemented parallel strategies. The CMFD method 

has little influences on the speedup for each parallel 

strategy, the speedups are doubled with the 

improvement of parallel strategy. There are some 

variations in speedup with the increase of subspace 

dimension, it is mainly caused by the CPU cases time 

which is more sensitive to the subspace dimension 

than GPU cases. 
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Fig. 4. Speedup for difference computation condition. 

 

3.2 The 2D HTTR benchmark problem 

This problem is extracted from the reference[20], in 

which both the 2D and 3D benchmark problems are 

developed to examine the capacity of deterministic 

transport code. Its prototype is the experimental High 

Temperature Engineering Test Reactor (HTTR), 

which was built by JAERI (Japan Atomic Energy 

Research Institute) in the late 1990s. The lattice code 

HELIOS was used to generate the 6-group 

macroscopic cross section library, and the reference 

solutions were calculated by MCNP with the 

generated cross section library. 

 

Due to the symmetry design, only one sixth of the 

core is modeled in present study. There are three 

geometry configurations according to the insertion 

patterns of the control rods(case 1: all-rods-in; case 2: 

partially-controlled; case 3: all-rods-out). Figure 5 

gives the geometry configurations of fuel block, 

control block and the 1/6 core, all necessary 

geometric dimensions are listed in Table 4. There are 

four fuel types/enrichments marked with different 

colors as illustrated in Fig. 5c, and each fuel block 

consists of 33 fuel cells and 3 burnable poison rods as 

shown in Fig. 5a. The control rod is annular, and 

there is a coolant hole filled with helium at the center 

of control rod. Since the helium is not included in the 

cross section library of the code HELIOS, the 

channels filling with helium are replaced by void in 

the current and reference calculations. The 

partially-controlled case means that all control rods in 

CR3, 4 and 5 are inserted while CR1 and CR2 are 

withdrawn as shown in Fig. 5c. 
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1 2 3

4 5 6 7 8

9 10 11 12 13 14

15 16 17 18 19
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(a) fuel block   

 Control rod Graphite Void   

(b) control block 

Replaceable reflector block

4

1

CR4

6

CR2

5
3

2

CR5

CR3

CR1

 

    (c) block indexing in 1/6 core 

Fig. 5. Block structure and 1/6 core configuration of HTTR. 

 

Table 4. Simplified HTTR benchmark geometry 

parameters 

Flat-to-flat core width 436.4768 cm 

Flat-to-flat block width 36 cm 

Fuel pin (BP rod) pitch 5.15 cm 

Fuel pin diameter 4.1 cm 

BP rod diameter 1.5 cm 

Control rod diameter 12.3 cm 

Control rod inner diameter 6.7 cm 

Distance from control rod center to block 

center 

10.8 cm 
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Figure 6 displays the flat source regions 

discretization schemes for the fuel cell, burnable 

poison cell and reflector cell. Since the variation of 

neutron flux gradient, the discretizations of reflector 

cells are different for the replaceable reflector block 

and permanent reflector block. There are 18 reflector 

cells as shown in Fig. 6c in a replaceable reflector 

block between the opposite sides while 16 and 10 

reflector cells in the inner and outer permanent 

reflector block, respectively. Overall, there are 50 110, 

49 670 and 48 916 flat source regions generated in 

the one sixth core for three control rods 

configurations, respectively. The other discrete 

parameters are specified as the previous subsection. 

 

The computation results for the 2D HTTR benchmark 

problem are listed in Table 5, and it should be pointed 

out that the time does not include the consumptions 

of geometry processing and coefficient matrix 

construction, and only the time of source iterations 

are given here. The results show that the parallel 

strategies and the subspace dimension have little or 

no influence on the computation accuracy and the 

number of source iterations for all three cases, and 

the trivial variations of source iterations in the 

gpu_block are mainly caused by the loss of 

significance when performing the parallel reduction 

operations. The linear system solution time depends 

upon the Krylov subspace dimension heavily, 

especially for the CPU version. For both the 

gpu_cv/sm and gpu_thread cases, the dimension no 

longer has any pronounced influence on the runtime 

when the dimension is greater than 30. This is 

because there are more iterations(proportional to the 

number of SpMVs) required in the GMRES 

algorithm with a smaller dimension. Once the 

dimension is greater than 30, the number of GMRES 

iterations will hardly change any more and the time 

of vector operations in the GMRES algorithm can be 

neglected as mentioned before. 

 

Figure 7 displays the comparison of speedups under 

different computation conditions for the three 

insertion patterns of the HTTR benchmark problem. 

There is a tendency that the speedup increases with 

the subspace dimension, and this phenomenon results 

from the sensitivity of solution time to the dimension 

in CPU version while the solution time in GPU case 

is practically independent of the dimension greater 

than 30 as mentioned above. Since introducing the 

uncertainty of the rounding errors when performing 

the SpMVs, the speedup tendency of the gpu_block is 

not regular like the previous two cases. But overall, 

there is a significant improvement in speedup 

compared with the previous two cases for all three 

control rods configurations. 

 
(a) fuel cell 

 
(b) burnable poison cell 

 
  (c) reflector cell 

Fig. 6. Flat source regions partition schemes. 
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Fig. 7 Speedups comparison for HTTR benchmark problem. 
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Table 5. Computation results for 2D HTTR benchmark problem 

 

M* 

 

cpu gpu_cv/sm gpu_thread gpu_block 

Error** 

/pcm 

/pcm 

Time/s Itrs. 
Error 

/pcm 

 

Time/s Itrs. 
Error 

/pcm 

 

Time/s Itrs. 
Error 

/pcm 

 

Time/s Itrs. 

Case 1: All-rods-in 

10 -134.2  3068.02  203  -134.3  852.18  204  -134.3  830.78  204  -133.8  530.43  207  

20 -134.3  2832.36  204  -134.3  743.02  204  -134.3  724.78  204  -133.8  487.61  202  

30 -134.4  3058.19  205  -134.4  700.96  205  -134.4  684.27  205  -133.9  478.80  207  

40 -134.4  3300.69  205  -134.3  692.93  204  -134.3  676.55  204  -134.0  483.65  211  

50 -134.4  3678.78  205  -134.3  696.76  204  -134.3  680.03  204  -134.2  480.43  208  

Case 2: Partially controlled 

10 7.3  3006.82  193  7.3  818.94  194  7.3  805.89  194  7.7  504.99  197  

20 7.3  2744.51  194  7.3  692.80  194  7.3  682.32  194  8.0  475.22  200  

30 7.3  2962.06  194  7.3  649.27  194  7.3  639.13  194  8.6  467.06  208  

40 7.3  3269.36  194  7.3  645.18  194  7.3  635.23  194  7.6  455.08  201  

50 7.3  3680.06  194  7.3  645.70  194  7.3  635.91  194  7.6  490.56  220  

Case 3: All-rods-out 

10 -100.5  3558.87  257  -100.4  975.65  256  -100.4  953.60  256  -98.0  573.69  245  

20 -100.4  3056.14  256  -100.5  818.83  257  -100.5  801.45  257  -99.0  538.80  251  

30 -100.5  3011.01  257  -100.5  749.14  257  -100.5  732.55  257  -100.1  521.51  255  

40 -100.5  3084.66  257  -100.5  749.33  257  -100.5  733.40  257  -97.8  499.69  244  

50 -100.5  3237.48  257  -100.5  749.42  257  -100.5  733.21  257  -98.9  520.32  252  

*  The M represents the subspace dimension; 

** The error represents the relative error of 𝑘𝑒𝑓𝑓 comparing with the reference solution. 

 

4 Conclusion 

In this paper, the preconditioned GMRES algorithm 

was implemented to solve the resulting sparse linear 

system arisen from the MMOC method. To find the 

hotspot, the computation complexity of the algorithm 

has been analyzed, and the theoretical result shows 

that the SpMV operations require the majority of 

runtime with the typical Krylov subspace dimension. 

The GPU-based CUDA technique was utilized to 

accelerate the linear system solution process using 

the coherent accessing and shared memory technique. 

However, the feature of coefficient matrix would 

decrease the throughput rate of parallel code, 

especially the SpMV operation, since there is the 

difference in the row size of the coefficient matrix. 

Based on this knowledge, another two optimal 

parallel strategies focusing on the first part of the 

matrix are proposed to perform the accumulation 

operations of a row vector within a thread and threads 

block, respectively. The C5G7 benchmark problem 

and the 2D HTTR hexagonal benchmark problem 

have been simulated to verify the parallel code and 

valuate the acceleration performance of the proposed 

methods. The results indicate that the parallel 

strategies have no pronounced influence on the 

computation accuracy, and the proposed optimal 

schemes have higher speedups, in particular, the 

second scheme has a remarkable improvement with 

respect to the acceleration performance since more 

hardware resource was utilized than the first optimal 

scheme. 
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