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Abstract: In a nuclear power plant, severe accident may result from unchecked malfunctions and human error, 

and it could lead to radiological release to the immediate surroundings and global ecological environment. 

However, a reliable fault detection and diagnosis methodology could inform the operators about the current 

situation of the plant and assist them to locate and diagnose the malfunction accurately and properly. This paper 

presents an integrated data-driven methodology for an on-line fault diagnosis in a nuclear power plant. One of 

the merits in this methodology is that it utilizes all the plant measured parameters to perform on-line training 

and simultaneously implement diagnostic task. In addition, the related algorithms in different phases of the 

diagnostic system are optimized to avoid incorrect results and reduce false alarms. The proposed method 

utilizes improved principle component analysis model to detect abnormalities. Furthermore, on-line artificial 

immunity algorithm is adopted to recognize the fault type based on the already existing simulation model. 

Consequently, some typical distance formulae for similarity measurement – the Euclidean distance and the 

Mahalanobis distance - are applied for on-line failure degree evaluation. The performance of this methodology 

is verified by applying it to the Reactor Coolant System of a Pressurized Water Reactor. The results show that 

this improved data-driven methodology utilized for fault detection and diagnosis is feasible and practical. More 

significantly, it is handy to enhance the research depth on computerized operator support system and on-line 

risk monitoring, which will assist operators to make decision and operation.  

Keyword: fault diagnosis; principle component analysis; artificial immunity algorithm; similarity 

measurement; pressurized water reactor 

 

1 Introduction
1
 

A nuclear power plant contains hundreds of 

sub-systems and numerous monitoring and control 

parameters, and a significant number of these systems 

are mutually coupled with each other 
[1]

. The 

complexity in these couplings is especially noticeable 

when malfunctions in a power plant occur. Although 

reactor operators have gone through numerous 

trainings over time, in certain situations it’s still 

difficult for them to accurately assess the fault in a 

very short period of time 
[2]

. This is mainly as a result 

of the huge psychological pressure the operators 

always face when fault occurs. Also, a large number of 

scattered alarms may delay or even disturb the 

operator judgement to carry out effective 

identification and operation, which ultimately lead to 

human errors with serious effect on the safety of 

nuclear power plants 
[3]

. It could then lead to 
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radiological release to the immediate surroundings 

and global ecological environment 
[4]

. 

 

Therefore, it’s necessary to study effective fault 

detection and diagnosis methods for nuclear power 

plants. That is methods with capability to extract the 

major symptoms and information to assist the 

operators to make accurate judgments and decisions 
[5]

, 

so as to effectively prevent incipient faults from 

resulting in a severe accident. As for the economy of 

nuclear power plants, early and timely fault diagnosis 

can reduce unscheduled maintenance tasks and 

unnecessary shutdown of reactor 
[6]

. Meanwhile, with 

the development of digital instrument control system 

(I&Cs), the third-generation nuclear power 

technologies such as AP1000, EPR, etc. are widely 

utilizing digital I&Cs which could provide more 

information and parameters than the traditional one 
[7]

. 

Thus, it is more convenient for the design and 

development of data-driven fault diagnosis 

methodologies. More importantly, the fault diagnosis 
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method can conversely improve the intelligent and 

information level of digital I&Cs to ensure the safe 

operation of the nuclear power plant 
[8]

. At the same 

time, from the current-development-trend perspective, 

small modular reactors may be utilized in special areas 

for energy supply such as in remote islands, offshore 

drilling platforms and even international space 

stations such as the “isolated island”, with very few 

operating crew. Hence, the prospective application of 

modular reactors requires an urgent need for 

intelligent detection and fault diagnosis technology.    

 

Researchers all over the world have done a lot of 

research on anomaly detection and fault diagnosis, and 

these researches can be divided into two categories: 

One is based on qualitative knowledge such as expert 

systems, graph theory, qualitative mathematical 

models, fuzzy logic, etc 
[9]

. The diagnostic system 

developed by Europe Halden project can identify 

typical faults for system and device based on 

knowledge of experts 
[10]

. The PRODIAG diagnostic 

system developed by the Argonne National 

Laboratory can utilize function-based and 

component-based features for qualitative fault 

diagnosis 
[11]

. However, the acquisition of knowledge 

is the difficulty in these methods, because nuclear 

power plants are complex nonlinear systems, and there 

may be shortcomings such as rule matching conflict 

and combinatorial explosion in qualitative reasoning 

process. In addition, the knowledge-based system, like 

most diagnostic systems, can sometimes provide 

incorrect diagnostic results. 

 

Another diagnostic method is the data-driven 

approach, mainly divided into statistical methods and 

non-statistical methods 
[12]

. The statistical methods 

primarily contain PCA, partial least squares, and their 

variants, and they have been successfully 

implemented in a number of systems. The University 

of Tennessee utilizes the PCA algorithm to identify 

system failures and model uncertainties 
[13]

. China 

Atomic Energy Institute uses PCA algorithm to 

diagnose the faults in main coolant pumps. Other 

non-statistical methods mainly include artificial 

neural network, support vector machine, Bayesian 

network, and artificial immune algorithm. Using the 

fuzzy neural network, Zio studied the fault diagnosis 

method of CANDU-6 nuclear reactor main coolant 

pump 
[14]

. Wolbrecht applied Bayesian network model 

to diagnose the power failure of the equipment, 

confirming the suitability of the model in engineering 

applications 
[15]

. Ishiguro adopted the immune 

network model for on-line fault diagnosis of 

equipment 
[16]

. However, the major drawback of these 

methods is the over-reliance on historical data, which 

is often difficult to obtain. At the same time, the 

unexplainable diagnostic results could not convince 

the operators. 

 

In summary, qualitative knowledge-based methods 

have some limitations in knowledge acquisition and 

qualitative reasoning; the data-driven method requires 

a large number of historical data under failure scenario, 

and the actual failure data cannot be created artificially 

in nuclear power plant. Moreover, utilizing 

corresponding experimental equipment for data 

acquisition is not economical. Thus, most of the 

current fault diagnosis methods utilize full-scope 

simulator to not only simulate the actual NPP, but also 

experiment with a variety of failure scenario. Hence, 

the results of abnormality detection and fault 

diagnosis are too idealistic because of the problems 

with acquiring data that represent fault situations. 

With the development of simulation technology, it is 

possible to establish a mechanism simulation model 

which could run synchronously with NPP by acquiring 

real-time process parameters through I&Cs. When a 

failure occurs, thermal-hydraulic mechanism 

simulation model is switched from on-line operation 

to off-line faster-than-real-time status to quickly 

calculate the change trends 
[17]

. These simulation data 

obtained from simulation model could reflect the 

current status of NPP after failures, which will not 

only solve the problem of sample data acquisition, but 

also eliminate the uncertainty caused by different 

configurations.   

 

Based on the existing on-line simulation model, this 

paper studies the improved PCA-based algorithm. 

Artificial immunity algorithm (AIA) and some typical 

distance functions in similarity measurement are 

combined in the system-level on-line fault detection 

and diagnosis methodology. Compared with the 

traditional data-driven methods, fault detection based 

on PCA is combined with false alarm reducing 

algorithm based on binomial distribution which is 
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more practical in engineering application. In addition, 

AIA and two typical distance functions could do 

on-line learning and training with all measurements 

for fault type diagnosis and degree assessment. 

Inevitably, the thermal-hydraulic mechanism 

simulation model have a certain calculation errors 

compared with the actual operating parameters. 

However, the integrated data-driven method described 

in this paper has a strong fault tolerance capability 

which can extract the main features of abnormal 

parameters to perform fault diagnosis. Hence, the 

hybrid approach serves as a form of make up for the 

on-line simulation model to improve the practicability 

and accuracy of data-driven fault diagnosis. 

 

The methodology presented in this paper has a wide 

scope of application in Pressurized Water Reactor 

(PWR) systems, and by extension, any other types 

of NPP. This paper considers the Reactor Coolant 

System (RCS) of a PWR as research case study to 

discuss and examine the integrated data-driven 

methodology and to evaluate its performance. The 

paper is organized as follows. Section 2 provides a 

description of the theoretical background of the 

approach utilized for fault detection, fault diagnosis. 

The assessments of the fault detection and false 

alarm reducing method based on PCA is presented 

in Section 2.1; the fault diagnosis methods using 

AIA is discussed in Section 2.2; The process of 

combining the PCA and similarity measurement for 

failure degree evaluation are discussed in Section 

2.3. Section 3 presents the constitution and 

development of hybrid fault detection and diagnosis 

methodology. Section 4 describes the test results of 

simulation experiments. Finally, the concluding 

remarks are summarized in Section 5. 

 

2 Theory and methodology of fault 

detection and diagnosis 

2.1 Overview 

The purpose of integrating several data-driven 

approaches is to take advantage of their individual 

merits and to compensate for their defects. This step is 

believed to further enhance the accuracy and 

effectiveness of fault diagnosis. In this work, the PCA 

model and binomial probability distribution are 

integrated to detect the abnormalities as quickly as 

possible and reduce false alarm to the minimum. 

Moreover, the AIA inspired by the biological 

immunity phenomenon is applied for fault type 

diagnosis. AIA for fault diagnosis shows great 

advantages in on-line training and gives accurate 

pattern recognition. After locating the fault type, the 

failure magnitude should be evaluated for typical 

faults which is significant for operators to evaluate the 

current status of the NPP. As parameters under 

different failure degrees are totally different from each 

other, PCA and some distance functions for similarity 

measurement are combined to achieve the assessment 

of failure degree. Specifically, the framework of the 

diagnostic system is as shown in Fig.1, and its 

processes are as described below:  

 

Step 1: The plant measurements are acquired real-time 

from I&Cs and stored into a database, according to the 

layout of sensors. 

 

Step 2: An optimized PCA-based model is utilized to 

detect the faults by analyzing the real-time data. After 

detecting the abnormalities, the on-line mechanism 

simulation model is transferred to the off-line 

calculation to provide training data for AIA and 

similarity measurement.  

 

Step 3: During the diagnostic process, AIA adopts 

different simulated data as training data and matches 

the output with the real-time data at the same time to 

get the results. 

 

AIA modelPCA model Distance function

Real-time
 database

General fault Typical faultNormal

HMI

Fault set

Training data

PCA model

Mechanism 
simulation model

Fig.1 Framework of the integrated data-driven methodology 

 

Step 4: If the malfunction is a general fault 

(wrongly-opened or wrongly-closed pumps and 

valves) the results will be displayed in the human 

machine interface (HMI). However, if the malfunction 

is a gradual fault such as a small leakage in the 

pipeline, containers or heat exchangers, the failure 

magnitude will be assessed.  
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Step 5: Then the PCA model is used for reduction of 

data dimension to acquire the major features of 

real-time and simulated data, and the Euclidean and 

the Mahalanobis distance models are utilized to 

evaluate the corresponding degree of the fault. Further, 

the results from these distance models are compared 

and analyzed, leading to a decision on their suitability 

for the task. Finally, the entire information on the 

malfunction will be shown in HMI. 

 

2.2 Fault detection based on enhanced PCA model 

PCA-based method is one of the multivariate 

statistical techniques, and it utilizes orthogonal 

transformation to convert the high-dimensional 

multivariate information into low dimensional 

information. Thus, it has obvious advantage in feature 

extraction and data compression 
[18]

.  

 

For traditional threshold-based fault detection, 

numerous parameters are selected to obtain enough 

information, but too many parameters will increase the 

difficulty of detecting the abnormalities. Hence, PCA 

model calculate the statistics in principal space and 

residual error space, which is much more sensitive 

than threshold-based method. This approach proves to 

be more accurate and faster for abnormality detection.  

 

The PCA-based abnormality detection is mainly used 

for the linear process; hence it could work efficiently 

for a linear system. However, a nuclear reactor is a 

typical non-linear system. If PCA model is directly 

utilized for on-line monitoring in a non-linear system, 

there may be numerous false alarms which will 

have a strong impact on the normal operation of NPP. 

Hence, the false alarm reducing PCA algorithm based 

on binomial probability distribution is adopted. The 

framework of fault detection and false alarm reduction 

is shown in Fig.2: 

 

The array Xn×m is the new data matrix, where n 

means the dimension of samples and m means the 

number of samples. According to the theory of PCA, 

after normalization and standardization of these data, 

the covariance matrix of Xn×m is： 
T

m m m mx
C P D P

 
              (1) 

 

Where， D


 is the eigenvalue matrix shown as 

 
1 2
, , ,

m
diag    ，and P is the eigenvector matrix of 

Xn×m.  

Training data 

matrix

Normalization of matrix 

Xn×m  

Covariance matrix of 

Xn×m : Cx

Eigenvectors of Cx : 

[P1,P2,…,Pm]

Eigenvalues of  Cx : 

λ1,λ2,…, λm 

Eigenvalue decomposition

Number of PCs:

λ1,λ2,…, λk

Simplified eigenvalues 

Limit of T2 

statistic:Ta
2 Limit of Q statistic:Qa

PC 

matrix:X

Residual  

matrix:E

Real-time data 

vector

Normalization of vector 

x  

PC matrix:X
Residual  

matrix:E

Real-time T2 statistic Real-time Q statistic

T2 >Ta
2 Q >Qa

Allowable number of 

alarms :m

Binomial  probability 

distribution of Q or T2:P(m:n)

Whole  probability 

distribution of Q or T2 :F(m:n)

F(m:n) >β

The real-time number 

of alarms:t1

The real-time number 

of alarms:t2

t1 >m t2 >m

Modeling process Monitoring process

No

Yes Yes

Yes Yes

Yes

Fault diagnosis module

Fig.2 The framework of fault detection and false alarm 

reduction 

 

Furthermore, the number of PCs is determined based 

on the eigenvalues. In this paper, a cumulative 

percent variance (CPV) is adopted, from which the 

variation in PCs could approximately represent the 

variation of the selected PCs： 
l

i=1

i=1

100%

i

i

i m

i

CPV








 




            (2) 

Where, l < m is the number of PCs. For the selected 

PCs, the original data matrix X can be decomposed 

into a PC matrix X


which contains the information 

on system variation, and a residual matrix E which 

contains information on noise or model error. 

Consequently, the matrix X is represented as: 

X X E                 (3) 

Where，X


is the ideal values of X, and E signifies the 

errors in the model. X


and E are represented by 

PCA as follows： 
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ˆ ˆ ˆ ˆT T

n m m l m l
X TP X P P

  
             (4) 

( ) ( )

T T

n m m m l m m l
E TP X P P

    
        (5) 

Where T̂  and T are the score vector which 

represent the principal components (PCs) and P̂  

and P  mean the load vector. 

 
As shown in Fig. 2, during the detection process, Q 

statistic which measures the variance in residual space 

E and Hotelling's T
2
 statistic that represents the 

variance in PC space X  are calculated for a real-time 

vector 1 2[x ,x ,...,x ]mx   as: 

 T T

l l a
Q x I PP x Q           (6) 

2 1 1 2T T T

i i l l a
T t D t xPD P x T

 

 
       (7) 

Where, 
a

Q  and 
2

a
T  derived from training process 

are the statistic limit for Q and T
2
 statistics, 

respectively 
[19]

, and I is the unit matrix. If the Q or T
2
 

statistics exceed the corresponding limits, alarm will 

be triggered and fault diagnosis module will be 

activated. 

 

As false alarms may occur due to the fact that NPP is a 

non-liner system and coupled with auto-control logics, 

it is essential to reduce the events of false alarms to the 

bearest minimum. In this paper, binomial distribution 

is combined to achieve this aim. We suppose that the 

false alarm probability of Q and T
2 

statistics is μ for 

every second and all real-time data are independent of 

each other, so the probability distribution of T
2
 or Q 

statistics is represented as: 

(a : ) (1 )
a a b a

b
P b C u u


           (8) 

Where, “b” is set as the observation window and “a” is 

the frequency of false alarms in observation window. 

Then the whole probability in “a” seconds is: 

0

( : ) (1 )
a

a a b a

b

i

F a b C u u 




       (9) 

Further, a false alarm tolerance β is utilized to restrict 

the largest allowable m derived from Formula 9. β is 

an experience value according to the statistical 

experience in the monitoring process.  

 

Thus, during the monitoring process, the real-time 

data vector will be tested by the PC matrix and 

residual matrix to get the real-time T
2
 and Q statistics. 

If the T
2
 and Q statistics exceed the limits at any time, 

then further T
2
 and Q statistics will be analyzed in the 

observation window b. For real-time data, if the 

number of alarms is more than the calculated number 

m, then a true abnormality is detected and alarms will 

be triggered. Considering the sensitivity of fault 

detection, a large value for the length of observation 

window is unacceptable for delaying the time for 

diagnosis and analysis. However, a very small value 

is also improper. As a result, in this paper b=8 is 

adopted for the length of observation window. 

 

2.3 On-line fault type diagnosis utilizing AIA 

AIA is derived from the study of biological immune 

system. By imitating the body's immune system, 

antigen-antibody recognition, self-adjusting, cell 

differentiation and other functions are realized 
[20]

. In 

addition, antigen-antibody identification is one of the 

significant functions in biological immune system 

which attracts the attention of diagnostic researchers 

and it is being applied for pattern recognition 

problems 
[21]

. The merits of this method are 

self-organization, distributed parallel processing, 

self-taught learning, noise tolerance and good 

robustness providing a new thought for pattern 

recognition and fault diagnosis 
[22]

. 

 

As one of the data-driven methods developed in recent 

years, AIAs are similar with artificial neural network 

(ANN) in their requirements for numerous sample 

data under normal and different failure situations for 

network training and learning. However, this demerit 

could be avoided when combined with mechanism 

simulation model with capability to calculate 

parameter values faster-than-real-time to provide 

sample data under different failure modes. The 

following are the merits of AIA compared with ANN:  

 

(1) For ANN, weights and thresholds are utilized to 

represent the relation between inputs and outputs. But, 

an accurate ANN needs multi-layer network structure 

which may lead to inferior on-line learning ability and 

long time for training. Conversely, AIA utilizes 

antigen and other antibodies to train network which 

requires much less time for on-line training and 

learning.  

 

(2) If too many inputs are selected with ANN for 

on-line fault diagnosis, the network structure will 
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become complex, which further influences the 

convergence of network. Therefore, some of the 

measurements are used as inputs of ANN, although 

there will be greater uncertainty which may omit parts 

of the available information. On the contrary, the 

proposed AIA model do not need to select parameters, 

it utilizes all the measurements for fault diagnosis 

which will obviously reduce uncertainties because of 

the selected input parameters.  

 

The proposed algorithm is one of the branches in 

AIA, which is based on the theory presented by 

Tarakanov 
[23]

, which asserts that the lowest binding 

energy is generated by antigen and antihelion which 

belongs to its own cell tissue. Figure 3 displays the 

framework for diagnosing fault type: 

 

(1) During the on-line training processes, simulated 

data under normal and different failure modes are 

acquired from simulation model, named as 

1 2
( , ,..., )

normal i i in
X x x x ,

1 1 2
( , ,..., )

i i in
X x x x ,

2 1 2
( , ,..., )

i i in
X x x x ,

1 2
( , ,..., )

m i i in
X x x x . Where, 

m represents the number of fault types, n means the 

number of measurements and i expresses the time 

series of data. Further, they are normalized and 
standardized to eliminate the influence of dimension. 

Training data 

matrix

Normalization of matrix 

X1,X2 ,...Xn   

Real-time data 

vector

Normalization of vector x  

On-line modeling process On-line diagnostic process

mechanism simulation model

different fault type

Fault detection by PCA

Fold matrix Ai1 Fold matrix Ai2 Fold matrix Ain
...

Singular value decomposition

Singular valuesθ n2

Singular vector 

μ n2、vn2

Singular valuesθ nn

Singular vector 

μ nn、vnn

Singular vaulesθ n1

Singular vector 

μ n1、vn1

Antigen 

μ 11,μ 21,…,μ k1

Antihelion 

v11,v21,…,vk1

Antigen 

μ 11,μ 21,…,μ k1

Antihelion 

v11,v21,…,vk1

Antigen 

μ 11,μ 21,…,μ k1

Antihelion 

v11,v21,…,vk1

Fold matrix Areal-time

Binding energy w1
...Binding energy w2 Binding energy wn

compare

Fault type

The minimum one

Failure degree assessment

Fig.3 Flow chart of fault type diagnosis based on AIA 

 

(2)
normal

X ,
1

X ,
2

X …,
n

X  in every second are folded 

into data matrix, and named as 

normal
A ,

1i
A ,

2i
A ,…,

in
A . 

 

(3) In order to get antigen and antihelion, the data 

matrix is utilized to do singular decomposition in 

every second. For
m nA C  , there is orthogonal 

matrix 

1 2 3
[ , , , , ]

m m

m
U u u u u C


  ,

1 2 3
[ , , , , ]

n n

n
V v v v v C


  : 

 

1 1 1 2 2 2 3 3 3

0

0 0

H T T T T

r r r
A U V u v u v u v u v z


     

 
 
 

θ θ θ θ （10） 

 

Where,
1 2 3

( , , , , )
r

diag  θ θ θ θ ， and iθ  is the 

singular value of matrix A . 
iu  is the left singular 

vector and iv  is right singular vector. In addition, 

r  is the sequence of matrix A. As iu , iv  are 

vectors, 0
T

i i
u u  , 0

T

i i
v v  , 1,2,3, ,i r .  

 

According to the character of singular decomposition: 

for each singular value, 1 2 3 0n    θ θ θ θ . 

Also, singular value represents significant 

information and according to the theory of matrices 

the bigger the singular value is, the more important it 

will be. In order to utilize simple data matrix to 

replace complex matrix, the number of singular 

values are as shown below: 

 
1

1 2
/ 90%...

n

k i
   θ θ θ θ     (11) 

where, k is the selected number of singular values, 

and n represents the total number of singular values。

Therefore, matrix A  could be simplified as： 

1 1 1 2 2 2
...

T T T

k k k
A u v u v u v   θ θ θ   (12) 

(4) After selecting antigen and corresponding 

antihelion for every second under different failure 

modes, the real-time data matrix will be normalized, 

folded and combined with these antigen and 

antihelion respectively to perform on-line fault 

diagnosis. As the binding energy will be lowest while 

the real-time data matrix is combined with antigen 

and corresponding antihelion of the same failure 

mode, the exact fault will be diagnosed. Specifically, 

iu , iv  are considered as antigen and corresponding 

antihelion. Finally, the binding energy is shown as Eq. 

13. 

1 1 2 2( ... )T T T

i k kW u Av u Av u Av       (13) 

where k is the selected number of antigen and 

antihelion. 
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2.4 Failure degree assessment by combining PCA 

and similarity measurement 

After diagnosing the fault type, PCA and similarity 

measurement was carried out to assess the degree of 

the faults. Similarity measurement is a kind of 

machine learning methods, and has already been 

applied in the complex chemical process, power line 

fault detection, biological genetic testing and so on 
[24]

. However, with respect to the aspect of fault 

magnitude evaluation, the method is relatively 

limited, and rarely applied to the analysis of NPP. 

Lang distance, Chebyshev distance and Ming 

distance are frequently used distance functions for 

similarity measurement. In this paper, we select two 

typical distance functions: Euclidean distance and 

Mahalabonis distance for failure degree evaluation 

respectively. Besides, the effectiveness of these 

different distance functions will be validated and 

compared. 

 

Euclidean distance is the most common distance 

function in our daily life, it reflects the real distance 

of two points in the multi-dimensional space and 

utilizes the whole distance to calculate the similarity 

with each other. But there are obvious shortcomings 

because it will equally treat each parameter in the 

data matrix which may not meet the practical 

requirements. In an n-dimension, Euclidean distance 

is represented as follows: 

 
2

12 1 2

1

n

k k

k

d x x


          （14） 

Where  
11 12 13 1

, , , ,
n

x x x x ,  
21 22 23 2

, , , ,
n

x x x x  are 

two points in dimension n  space, 1,2,3, ,k n . 

 

Mahalanobis distance is used to measure the 

covariance distance in different sample data 
[25]

. It 

can efficiently calculate the gravity distance between 

a sample and its sample sets. Besides, it can also 

eliminate the correlation between variables and 

reflect the relationship between each feature. In 

comparison with Euclidean distance, Mahalanobis 

distance is not affected by dimension scaling. In fact, 

Mahalanobis distance also considers the relationship 

between various parameters in a more comprehensive 

and scientific manner. We suppose there is i 

parameters in data matrix X, and the average vector 

is μ＝ (μ1,μ2,…, μi）
Ｔ
，Ｃx is the corresponding 

covariance matrix of data matrix X. Therefore, the 

Mahalanobis distance of real-time vector and each 

data matrix is given by 

   1

2

T

xd y C y          (15) 

During the evaluated process, parameters should be 

selected for distance function model. However, the 

selection of parameters may be greatly subjective. 

And we cannot always choose the parameters which 

will be applicable for the entire failure scenario. In 

order to solve this problem, PCA model is 

implemented to reduce data dimension and to choose 

fewer principle components for estimation of the 

original data 
[26]

, as shown in Fig. 4: 

 

Real-time

 Database

Faster-than-real-time

 calculation

real-time data

Simulation model

Failure degree 1 Failure degree 2 Failure degree n...

Fault diagnosis 

module

PCA model

Simplified 

sample 1
...Simplified 

sample 2

Simplified 

sample n

Distance function model

Evaluation 

curve 1
...Evaluation 

curve 2

Evaluation 

curve n

Normalization and standardization

Simplified data

Real-time 

distance curve n

Compare results
Human machine 

interface

Fig.4 Flow chart of fault degree evaluation. 

 

(1) After diagnosing the fault type with AIA, the 

sample data of this fault under different magnitudes 

are provided by simulation model. 

 

(2) Real-time data and different simulated data are 

normalized and standardized together.  

 

(3) According to the theory of PCA as defined in 

section 2.2, eigenvalue decomposition is done after 

getting the covariance matrix. Further, parameter 

estimation of the original matrix will be obtained after 

selecting the principal components.  
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(4) These simplified parameters are considered as 

O1(t) in m-dimensional space. In order to evaluate 

the current failure degree of RCS, polynomial 

fitting methods are adopted, where time is the 

independent variable and distances values Dit is the 

dependent variable. After computing curves for 

different failure degree， numerical integration of 

these curves, ΣDit is done respectively. 

 

(5) The real-time data are calculated through the 

same process as mentioned above so that 

numerical integration of real-time curve Σdt will 

be obtained and compared with ΣDit. Hence, the 

corresponding integrals value of ΣDit that is 

closest to that of Σdt is the failure degree i. 

However, if the difference between the integral 

value of ΣDit and Σdt is large, the nearest value 

of ΣDit compared with Σdt is stored. And then 

the simulation model will compute 

faster-than-real-time to provide more sample data 

around ΣDit for Mahalanobis distance function 

until the results of failure degree are within the 

acceptable range. 

 

3 Simulation test and results 

3.1 Obtaining and selection of related parameters 

It is pertinent to note that there are challenges with 

performing specific experiments on operating NPP to 

acquire real data with fault signatures. Consequently, 

the 300MW Qinshan NPP full scope simulator 

developed by Harbin Engineering University is 

utilized as a real NPP, and this paper assumes that the 

data collected is reliable. This NPP is a two-loop 

pressurized water reactor and the full thermal power 

is 966MW. The natural circulation steam generators 

(SG) are used to transfer the heat to the secondary 

side. In addition, the layout of the sensors in RCS of 

300MW Qinshan NPP and the corresponding 

parameters’ values under 100% reactor operating 

status are shown in Table 1. The table also contains 

the simulated values during steady operation, derived 

by utilizing thermal-hydraulic mechanism simulation 

model. 

 

In this research work, the proposed data-driven 

methodology is developed by MATLAB and C# 

programming. General faults such as miss-operated 

pumps and valves can be easily detected and analyzed 

by digital I&Cs. Thus, in order to test the functionality 

of the proposed methodology, a 2 cm
2
 leakage fault in 

1# cold leg pipeline is inserted at random after 300s of 

steadily running the NPP simulator at 100% power. In 

the incipient nature of this fault, the trends of the 

parameters change slightly, and the safety injection 

system is not activated. Moreover, the coolant pumps 

and SGs are all in normal operating mode because of 

the compensation/remission from proportional heaters 

in the pressurizer and the charging flow from 

chemistry and volume control system. Thus, detecting 

and accurately diagnosing this fault by the operator is 

difficult. Hence, the integrated data-driven fault 

diagnosis system is beneficial for these kinds of faults.  

In Fig. 5, some measurements are displayed under 

normal and abnormal conditions. 

 

Table1 layout of measurements in RCS 

No. Sensors 
Measured 

values 

Simulated 

values 

1 
1# outlet pressure 

of reactor vessel 

15.428MP

a 
15.432MPa 

2 
2# outlet pressure 

of reactor vessel 

15.428MP

a 
15.432MPa 

3 
1# outlet temperature 

of reactor vessel 
588.54K 588.41K 

4 
2# outlet temperature 

of reactor vessel 
588.54K 588.41K 

5 Pressure of pressurizer 
15.418Mp

a 
15.424Mpa 

6 
Water level of 

pressurizer 
5.40m 5.41m 

7 
Temperature of  

steam in pressurizer 
617.42K 617.52K 

8 
1# Outlet flow  

through SG to pump 

3338.52kg

/s 
3338.13kg/s 

9 
2# Outlet flow  

through SG to pump 

3338.72kg

/s 
3338.13kg/s 

10 
1# feed water  

flow of SG 

260.12kg/

s 
259.57kg/s 

11 
2# feed water  

flow of SG 

259.78kg/

s 
259.85kg/s 

12 
1# steam pressure 

of SG 
5.518MPa 5.524MPa 

13 
2# steam pressure 

of SG 
5.518Mpa 5.524Mpa 

14 
1# steam temperature 

of SG 
543.36K 543.37K 

15 
2# steam temperature 

of SG 
543.36K 543.37K 

16 1# water level of SG 10.47m 10.47m 

17 2# water level of SG 10.47m 10.47m 

18 1# outlet steam flow 259.86kg/ 259.84kg/s 
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of SG s 

19 
2# outlet steam flow 

of SG 

259.86kg/

s 
259.84kg/s 

20 
1# inlet pressure of 

reactor vessel 
15.55MPa 15.58MPa 

21 
2# inlet pressure of 

reactor vessel 
15.55MPa 15.58MPa 

22 
1# inlet flow of  

reactor vessel 

3338.52kg

/s 
3338.13kg/s 

23 
2# inlet flow of 

reactor vessel 

3338.52kg

/s 
3338.13kg/s 

24 
1# inlet temperature 

of reactor vessel 
562.34℃ 562.43℃ 

25 
2# inlet temperature 

of reactor vessel 
562.34℃ 562.44℃ 

26 
Water level of  

reactor vessel 
9.53m 9.53m 

 

 
Fig. 5(a) Measurements under normal and abnormal conditions. 

 

 
Fig. 5(b) Measurements under normal and abnormal 

conditions. 

 

 

Fig. 5(c) Measurements under normal and abnormal 

conditions. 

 

3.2 Rapid and accurate faults detection 

As stated in section 2.2, we suppose that the false 

alarm probability of T
2
 and Q statistics are μ for every 

second. According to the statistical experience as 

applied in nuclear industries, the commonly used 

experience value for μ is between 0.0 and 0.05. In 

addition, for a false alarm tolerance β, its common 

value is around 0.95 to 0.99. Therefore, the number 

of allowable false alarm m in time window n are 

shown in Table 2 under different values of μ and 

corresponding β. Consequently, considering the 

common situation, μ=0.05 and β=0.99 are selected 

for fault detection. Thus, the allowable false alarm 

is 3 in 8s time windows. 

 

Table 2 allowable false alarm m in 8s time windows 

 μ=0.01 μ=0.02 μ=0.03 μ=0.04 μ=0.05 

β=0.99 2 3 3 3 3 

β=0.97 2 2 3 3 3 

β=0.95 2 2 2 2 3 

 

The normal operation sample data acquired by sensors 

in the RCS are used to train the PCA model. Further, 

the PCA-based fault detection module is running 

online (Lu 2005) and T
2
 statistics, SPE statistics and 

the relevant limits are observed synchronously, as 

shown in Fig. 6.  
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Fig. 6(a) Change in trends of T2 statistics. 

 

 
Fig. 6(b) Change in trends of Q statistics. 

 

As observed during the normal operation of NPP, T2 

statistics and Q statistics exceed their limits 

sometimes. But according to the binomial probability 

distribution proposed in this paper, these alarms are 

false alarms, so the on-line monitoring continues. 

Then in 301s, T2 statistics and Q statistics exceed their 

limits. Moreover, after 303s, the abnormality could be 

confirmed because the allowable number of false 

alarm is 3. Hence, there is a malfunction in the RCS 

but we cannot locate where the fault is yet. That is, the 

operators cannot rely on the results to analyze the root 

causes of the alarms. On this basis, the fault type and 

location are analyzed further. 

 

3.3 Evaluation of the on-line fault type diagnosis 

The proposed methodology is able to utilize historical 

failure data for training and learning. However, such 

data are limited. Thus, a number of training data 

under various fault conditions can be derived by 

utilizing the existing simulation model. While the 

NPP model is in normal operating condition, the 

simulation model runs, mimicking the real-time 

operation of the NPP. After abnormality has been 

detected by PCA model, the simulation model is 

transferred to off-line status so that different failure 

mode can be provided for AIA model for its fault 

diagnosis. After checking the positions of valves and 

pumps in RCS to eliminate some general 

malfunctions, five common failure modes with 

similar changes in trends in some parameters are 

selected. The simulation model uses these failure 

modes to do its calculations, 5 times 

faster-than-real-time, and the calculated values serves 

to provide training data according to the changes in 

parameters as shown in Fig. 5. Since the 

malfunctions in 2# loop are similar with 1# loop, this 

paper only utilizes malfunctions in 1# loop to test the 

effectiveness of AIA. These five failure modes are 

leakage in 1# cold leg pipeline, leakage in 1# hot leg 

pipeline, steam generator tube rupture (SGTR) in 1# 

loop and false injection of safety injection system 

(FSIS). By comparing the changes in the trends of 

these parameters with safety analysis report, we 

observed that the fault degree is not severe. Hence, 

these small degree malfunctions is simulated at 

random. Finally, the trends of 26 measured 

parameters are acquired, as shown in Table 1. Also, 

Fig.7 shows the pressure of pressurizer under 

different failure modes. 

 

 
Fig. 7 Change trends under different failure modes. 

 

After normalization and standardization of these 

data
1 1 2 26

( , , ..., )
i i i

X x x x , 

2 1 2 26
( , ,..., )

i i i
X x x x …,

4 1 2 26
( , ,..., )

i i i
X x x x , 

where x1, x2, x3, x4,…, x26 are connected with 

parameters in Table 1. 
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Moreover, real-time data and failure data are folded 

for every time step to get the 4×7 data matrix. And 

then, singular decomposition is implemented for each 

data matrix to obtain all the singular values in each 

situation. Table 3 shows the singular values in 100s 

after the fault occurs. 

 

Table 3 Singular values under different failure modes 

No. Category 
Singular  

value 1 

Singular  

value 2 

Singular  

value 3 

Singular  

value 4 

1 
Leakage 

in hot leg 
1.2170 0.4270 0.0828 0.0098 

2 SGTR 1.3668 0.5306 0.1724 0.1062 

3 FSIS  0.6107 0.1208 0.0499 0.0157 

4 

Leakage 

in cold 

leg 

1.0318 0.3870 0.0098 0.0045 

 

And then, according to the following relation 

 
1

1 2
/ 90%...

n

k i
   θ θ θ θ  

the simplified singular values are selected. Hence, the 

antigen and antibody for each failure mode for every 

second are displayed as shown in Table 4.  

 

Table 4 Antigens and antibodies under different failure 

modes 

No. Category Antigen  Antibody 

1 

Leakage 

in hot 

leg 

(-0.9119,-0.2810,-0.2700,-0.1288) 

(-0.274,-0.159,-0.166,0.156,-0.158,-0.194,-0.886) 

(0.3720,-0.4467,-0.4768,-0.6594) 

(-0.555,-0.333,-0.312,-0.319,-0.309,-0.272,0.460) 

2 SGTR 

(-0.7814,-0.4244,-0.3770,-0.2591) 

(-0.453,-0.194,-0.157,-0.232,-0.219,-0.382,-0.696) 

(0.5483,-0.3232,-0.2783,-0.7193) 

(-0.504,-0.290,-0.191,-0.347,-0.363,0.190,-0.578) 

(0.2869,-0.6789,-0.2594,0.6241) 

(-0.032,0.106,-0.017,-0.646,0.491,0.525,-0.232) 

3 FSIS  

(-0.5139,-0.5343,-0.5197,-0.4370) 

(-0.497,-0.391,-0.344,-0.330,-0.330,-0.379,-0.347) 

(0.0402,-0.4496,-0.2946,0.8423) 

(0.131,0.294,0.095,0.113,0.114,0.090,-0.924) 

4 

Leakage 

in cold 

leg 

(-0.8474,-0.3600,-0.3443,-0.1835) 

(-0.410,-0.157,-0.152,-0.151,-0.153,-0.360,-0.780) 

(0.4672,-0.3505,-0.4099,-0.7006) 

(-0.690,-0.248,-0.255,-0.262,-0.231,0.092,0.517) 

 

 
Fig. 8 Real-time binding energy in AIA. 

 

Finally, the binding energy of measured data and 

every simulated data after malfunction occurs are 

displayed in Fig.8. It can be seen that the binding 

energy of leakage in 1# cold leg pipeline is the lowest 

40-50 seconds later after the fault occurs. 

 

3.4 Verification and comparison of on-line failure 

degree assessment 

After detecting and diagnosing the fault as a leakage in 

1# cold leg pipeline, the specific degree of this fault is 

assessed by combining PCA model with distance 

functions. At first, the off-line simulation model is 

reset to the scenario where the abnormality is detected 

by PCA-based on-line monitoring. Meanwhile, 

according to the safety analysis reports of NPP, the 

pressure and water level in the secondary loop of the 

SG changes distinctly when the leakage in the pipeline 

is more than 10cm
2
. However, it does not occur in this 

case.  

 

Hence, the leakage area must be less than 10cm
2
. After 

that, leakages with the magnitude of 8cm
2
, 6cm

2
, 4cm

2
, 

2cm
2
 and 1 cm

2
 respectively are injected into the 1# 

cold leg coolant pipe in the simulation model to get the 

training data for failure degree assessment. Figure 9 

shows the values of some measured and the 

corresponding simulated parameters in different 

failure degree. 

 

Besides, 26 measured and simulated data in different 

failure degree are normalized together. After that, 

PCA model discussed in section 2.2 is adopted for 

reducing the dimension of the data. Thus, the selected 

PCs and the corresponding eigenvector reconstitute 
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the estimated vectors. As shown in Table 5, 100s after 

the failure is detected; the dimensions of the estimated 

vectors are reduced from 26 to 6. 

 

 
Fig. 9(a) Water level of pressurizer in different failure 

magnitude. 

 

 
Fig. 9(b) Pressure of pressurizer in different failure magnitude. 

 

Table 5 status estimate vectors of original vectors  

No Name Estimate vector 

1 Measured values 
(-1.0164,0.1977,-0.0359,-0.037

2,-0.0075,-0.0070) 

2 
Simulated values 

with 1cm2 break 

(-0.6794,0.2103,-0.0141,-0.000

323,0.0179,0.0086) 

3 
Simulated values 

with 2cm2 break 

(-1.0217,0.1928,-0.0496,0.0155

,-0.0082,0.0131) 

4 
Simulated values 

with 4cm2 break 

(-1.1222,-0.0221,-0.0771,-0.00

4,0.0047,0.0088) 

5 
Simulated values 

with 6cm2 break 

(-1.2199,-0.2298,-0.1092,-0.02

37,0.0123,0.0114) 

6 
Simulated values 

with 8cm2 break 

(-1.3174,-0.4345,-0.1482,-0.03

62,0.0098,0.0195) 

 

Furthermore, these vectors are mapped as points and 

then calculated by Euclidean distance model and 

Mahalanobis distance model. Figure 10 shows the 

Euclidean distance curves with real-time data and 

simulated values under different failure degree. The 

base-10 logarithm of Mahalanobis distance curves is 

presented in Fig.11. 

 

100s later after abnormality detection, these distance 

curves are integrated with the event time respectively. 

The results show that the integral curves of Euclidean 

distance under 2cm
2 

leakages are similar with 

real-time data, and relative error is 1.10%. Moreover, 

the integral curves of Mahalanobis distance under 

2cm
2 
leakages are also similar with real-time data, and 

relative error is 1.33%. This result shows that the 

Mahalabonis distance and Euclidean distance are 

effective for failure degree assessment. It also shows 

that the combination of Euclidean distance and PCA 

model are much better, as the Mahalabonis distance 

represents the covariance distance of the sample and 

the inputs for Mahalabonis distance do not need to be 

normalized. However, the inputs for PCA model must 

be normalized, which invariably shadows the 

advantages of Mahalabonis distance. On the contrary, 

Euclidean distance shows the absolute distance of the 

estimated vectors which is in a lower dimension. In 

other word, PCA model and Euclidean distance make 

up for each other. As a result, the entire failure 

information is that there is leakage in 1# cold leg 

coolant pipeline and the leakage area is 2cm
2
. 

Consequently, these messages will be displayed in 

HMI to warn the operators concerning the severity of 

current malfunction. 

 

 
Fig.10. Euclidean distance after simplified by PCA. 
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Fig.11 Mahalabonis distance after simplified by PCA. 

 

4 Conclusions 

An integrated methodology for online fault detection, 

diagnosis and failure degree assessment is proposed 

in this paper based on optimized PCA, AIA and 

similarity measurement. It is a novel, enhanced 

data-driven diagnostic method and is much suitable 

to solve problems related to on-line fault diagnosis 

for complex systems such as NPP. Detailed 

mechanism analysis is described to be of positive 

significance in preparing for model construction and 

it proves that we can achieve better diagnostic 

accuracy. Utilizing thermal-hydraulic simulation 

model to provide on-line sample data, a case analysis 

is used to verify the accuracy and effectiveness of 

this methodology, and the approach shows the 

following merits: 

 

(1) The improved PCA-based abnormal detection is 

used to detect the malfunctions on time and it 

reduced the occurrence of false alarms to the 

minimum.  

 

(2) AIA-based fault type diagnosis with capability for 

on-line training is proposed and implemented on 

real-time data, resulting in a better pattern 

recognition.  

 

(3) Failure degree assessment is achieved by utilizing 

PCA and two typical distance functions – the 

Euclidean distance and the Mahalanobis distance - to 

lower the dimension of parameters, and for similarity 

measurement respectively. In addition, these distance 

functions are compared to select the best alternative. 

 

In conclusion, this improved data-driven 

methodology utilized for fault detection and 

diagnosis is feasible and practical. More importantly, 

this methodology - which is a part of computerized 

operator support system - can be extended to 

diagnose faults in other components of PWR, other 

types of NPP or even on other complex thermal 

plants, to maintain the safety and reliability. Further, 

it also presents good foundation to enhance the 

research depth in the study of on-line risk monitoring 

systems. 
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