
132 Nuclear Safety and Simulation, Vol. 9, Number 2, December 2018  

Regression model for crack severity estimation in NPP 
 

AYODEJI Abiodun1,2, and LIU Yong-kuo1 

 
1. Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin, 

Heilongjiang 150001, China.(lyk08@126.com, abiodun.ayodeji@hrbeu.edu.cn) 

2. Nuclear Power Plant Development Directorate, Nigeria Atomic Energy Commission, Abuja 900271, Nigeria 

(abiodun.ayodeji@nigatom.org.ng) 

 

Abstract: In-containment pipe failures in a nuclear power plant are being detected by measuring the humidity 

in the containment. However, incipient leaks and cracks are difficult to detect because traditional leak monitors 

are not sensitive to small leak rate changes and cannot be used for low-level leak rates and are limited to 

post-accident analysis of significant releases. In this work, we present an optimized data-driven Support Vector 

Regression (SVR) model. The proposed method can be integrated with the existing leak detector to form a 

robust hybrid diagnostic system, effective for detecting both incipient and large leakage in nuclear plant pipes. 

The SVR model estimates the size and location of incipient breaks using fault signatures, and the size 

estimation efficiency is evaluated using the mean squared error values (MSE). To obtain efficient predictive 

model and minimize false alarm rate, Genetic Algorithm is utilized for feature selection purposes. To 

demonstrate the method and evaluate the generalization capability of the predictive model, cracks of various 

severities at the inlet plenum of CNP300 NPP is simulated with RELAP5/SCDAP Mod4.0 code. The SVR’s 

relative error (MSE) with and without feature selection algorithms were compared using different solver 

algorithms. The result shows better performance for the model built with features selected by GA. The model 

also diagnose fault faster than conventional techniques. 
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1. Introduction1 

NPP online condition monitoring has developed from 

routine noise analysis technique for plant parameters 

to beyond sensor condition monitoring such as reactor 

internal vibration, leak detection, as well as 

performance evaluation of rotating parts and valves. 

Moreover, the presence of huge database provides 

better insights into the current state of the plant. 

Recently, the database has been indispensable in the 

utilization of the machine learning models and soft 

computing approaches for timely fault diagnosis. A 

few applications of majorly signal-based Fault 

detection and isolation (FDI) techniques for 

instrument calibration monitoring, instrument 

dynamic performance monitoring, equipment 

condition monitoring, reactor core monitoring, loose 

part monitoring, and some transients are reviewed in 
[1]. 

 

Some challenges affecting the practical FDI 

implementation in operating plants are the complexity 

of process dynamics, limited ranges of validity of the 

models, incomplete uncertain data, and model 

complexity [2]. To address these issues, a number of 

                                                        
Received date: October 29, 2018 

(Revised date: January 10, 2019) 

researchers [3][4] have proposed the development and 

utilization of distributed Support Vector Regression 

(SVR) algorithms with various capabilities for FDI. 

Ye et al. [4] present a wavelet and SVR based method 

for locating grounded faults in radial distribution 

systems. The method utilizes traveling wave data 

recorded at a substation and used the maxima of modal 

components in each scale as the candidate features for 

training an SVR. A comprehensive method for 

integrating the predictive capability of two different 

intelligent systems to a knowledge-based operator 

support system for nuclear plant fault diagnosis is also 

presented in [5], although the architectures of the 

support vector regression can be more easily 

determined than that of neural networks. Ding and 

Fang [6] utilized particle filter and nonlinear regression 

to predict faults in a nonlinear stochastic system with 

incipient faults. The effectiveness of the proposed 

method is verified by the simulations of the three-tank 

system. Liu et al. [7], proposed the hybrid of Elman 

Neural Network (ENN) and Signed Directed Graph 

(SDG) for fault recognition. In [8], wavelet-SVM 

model was used to detect broken rotor faults in 

induction machine, and PCA was also introduced for 

feature extraction. 
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A practical limitation of SVR is in the rate of false 

alarm generation, as a result of redundant features, 

signal noises and model uncertainties. NPP operations 

are characterized by disturbances, noisy 

measurements, and state variations. A number of false 

alarms are generated as a result of these transients. 

Also, uncertainties such as model abstractions, as well 

as high background noise as found in NPPs can 

obscure fault detection by raising false alarms. 

Moreover, regression models that involve a large 

number of redundant features may result in reduced 

learning speed, performance degradation, and 

increased probability of over-fitting [9]. To compensate 

for the model uncertainties as a result of plant 

fluctuations and instability, and to avoid 

over-parameterization of the SVR model, there is a 

need for effective feature selection and extraction.  

 

A number of feature selection algorithm and 

non-evolutionary statistical metrics such as Principal 

Component Analysis, Greedy Search, Sequential 

Feature Selection, and Bayesian Optimization have 

been explored to assess features’ discriminative power 
[8, 10]. However, some of these methods suffer from 

local optima, high computational cost, and 

generalization problems. Comparatively, swarm 

intelligence algorithm and evolutionary computation 

such as Genetic Algorithms (GA), Ant Colony 

Optimization (ACO), Particle Swarm Optimization 

(PSO), among others have been shown to possess 

great capabilities in finding global optima. 

Specifically, GA has been shown to demonstrate 

consistent superiority over other methods in 

undertaking feature selection problems by employing 

an evolutionary and swarm-based strategy to yield 

multiple solutions for complex and non-linear 

problems [11].  

 

Consequently, we propose an optimized support 

vector regression model to diagnose incipient, 

low-level fault and specifies the severity of the fault. 

We acknowledge that selecting features that are 

signatures of specific faults would improve the 

generalization ability of the model and reduce false 

alarm rate. Hence, to select appropriate features to 

train the SVR model, we experiment with GA feature 

selection algorithm. To test the method presented in 

this study, incipient cracks in the inlet plenum of a 

steam generator event is simulated using a 

thermal-hydraulic system code, RELAP5/Mod4.0. 

 

Section 2 presents the utilization of the proposed 

method for fault detection. Fault modeling and 

simulation technique to obtain plant fault signatures 

event are presented in Section 3, and the SVR system 

development and evaluation results are presented in 

section 4. In Section 5, we summarized our findings 

and state the future direction.  

 

2. Severity estimation with SVR 

model 

2.1 Theory of SVR 

Support Vector Regression (SVR) is a kernel-based 

machine learning approach, applied to tasks such as 

function approximation and regressive parameter 

estimation. SVR has been successfully used to handle 

regression problems and has been showed to achieve a 

good result when applied to forecast nonlinear 

systems [12]. The main feature of the algorithm is the 

use of a nonlinear kernel transformation to map the 

input variables into a feature space such that the 

relation with the output variable becomes linear in the 

transformed space. In this work, support vector 

regression algorithms output a real-valued response to 

set of non-linear predictors based on the non-linear 

kernel transformation function, a function that 

transforms the input into induced high dimensional 

feature space suitable for linearizing non-linear 

problems.  

 

Compared to normal regression, SVR function does 

not change with additional samples, as long as the 

deviation introduced by the sample is less than a 

threshold  [13]. For samples with threshold beyond , 

there exists a  -insensitive loss function C  that is 

used to penalize such errors. The loss function gives a 

sparse representation of the decision rule, ensures the 

existence of the global minimum and optimizes the 

generalization bound, giving the algorithm a 

significant representational advantage. In SVR 

modeling, we consider an input  ;D

ix   mapped 

into a z - dimensional feature space, by a non-linear 

kernel function, where a linear model ),( wxf is 

constructed in the feature space such that: 
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Where )(xj , zj ....1  is the set of non-linear 

transformation,   is the weighing parameters, and 

b specifies the location of the hyper-plane bias away 

from the origin. For  -insensitive SVR, the quality of 

estimation is measured by the loss function and the 

goal is to find the weight   and bias b that 

minimizes the loss function given by: 
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The SVR generalization capability varies for different 

tasks. For most non-linear regression task, nonlinear 

kernel technique is utilized to find the best separating 

boundary and the accurate response value for training 

instances that are not linearly separable. This kernel 

function maps the input space from lower dimension 

to higher dimensional input space, where linear 

separation is possible. The decision function learned 

by this approach simultaneously computes support 

vector regression models in place of multiple binary 

classifiers. Further discussion on SVR can be found in 
[13]. 

 

2.2 Feature selection using GA 

Genetic algorithm (GA) is an evolutionary algorithm 

that simulates the process of natural selection, used for 

solving both constrained and unconstrained 

optimization problems. In GA, candidate solutions of 

the problem are encoded as a population of 

chromosomes. The algorithm repeatedly modifies a 

population of individual solutions. At each step, the 

algorithm randomly selects individuals from the 

current population and uses them as parents to 

produce the children for the next generation. GA 

incorporate randomness into their search procedure to 

escape local minima, and over successive generations, 

the population evolves toward an optimal solution [14]. 

In GA, a new population is formed using specific 

genetic operators such as crossover, reproduction, and 

mutation [15]. A standard representation of each 

chromosome is as a fixed-length array of bits. GA 

generates an initial population of feasible solutions 

and recombines them in a way to guide their search 

toward more promising areas of the search space. 

Each of these feasible solutions is encoded as a 

chromosome, also referred to as genotype, and each of 

these chromosomes will get a measure of fitness 

through a fitness function (evaluation or objective 

function), where low fitness value shows the better 

solution for minimization problems such as feature 

selection. GA has five main components: a random 

number generator, a fitness evaluation unit, a 

reproduction process, a crossover process, and a 

mutation operation. Reproduction selects the fittest 

candidates of the population, while crossover is the 

procedure of combining the fittest chromosomes and 

passing superior genes to the next generation, and 

mutation alters some of the genes in a chromosome 
[14]. 
Table 1: Generalized structure of Genetic Algorithm 
GA( ): 

Init_Rand_ P( ); 

Evaluate_Fitness_P(V); 

While (termination Criteria) do:  

  Parent selection; 

    Crossover with probability Pc to form a new offspring; 

    Mutation with probability Pm; 

    Fitness Calculation; 

    Survivor selection 

     If best solution found then: 

       Exit  

Return the best solution 

For this work, we utilized the GA feature selection 

algorithm developed by Ludwig [16] in MATLAB. 

Figure 1 shows the framework and expanded flow 

diagram of the SVR model training for the fault 

diagnostic system. Our focus is to use appropriate data 

filtering procedures based on the features selected by 

GA to design and train the SVR model, so as to 

eliminate redundant data, reduce false alarm events 

and obtain high-quality estimation. The 

pre-processing procedure for input data is also 

included to obtain more stable input and achieve 

higher estimation accuracy. 
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Fig.1 Framework and expanded flow diagram of the SVR 

model training. 
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3 Demonstration of the proposed 

fault diagnosis scheme  

3.1 Fault modeling with RELAP5/Mod4.0 

To test the proposed FDI method, we utilized the data 

derived from modeling and simulation of incipient 

cracks in CNP300 NPP hot leg inlet plenum. 

Unmitigated cracks could lead to large, guillotine 

break and loss of coolant accident. To obtain quality 

data that is representative of an operating NPP, 

RELAP5/SCDAP Mod4.0 thermal hydraulics code 

was used to model and simulate faults in CNP300 I 

NPP. Qinshan phase I NPP (CNP 300) is a Chinese 

owned two-loop 300MW (electric) PWR, located in 

Zhejiang Province, China. The RELAP5 code is a 

versatile and robust code based on a one-dimensional 

two-fluid model for two-phase flow. Figure 2 shows 

the nodalization diagram of a section of the reactor 

coolant system. For the simulation of SGTR fault in 

the RCS, a loop of the RCS is modeled. First, the full 

RCS primary loop is modeled, and the parameters are 

compared with the actual plant parameters, to confirm 

model accuracy. Table 2 shows the comparison of a 

few selected initial condition (steady state) parameters 

used as the actual operating parameters.  

Table 2: Comparison of plant steady-state parameters 

Sub-unit Parame

ters 

Real 

values 

Simulated 

Values 

Errors 

(%) 

Steam 

Generator  

Feedwat

er flow 

259.86 

kg/s 

259.92 

kg/s 

0.02 

Steam 

outlet 

temperat

ure 

270.2℃ 

 

271.9℃ 

 

0.6 

 

Steam 

Pressure 

5.5Mpa 

 

5.52Mpa 

 

0.36 

 

SG 

water 

level 

10.47m 10.44m 0.21 

Pressurizer Pressuri

zer 

pressure 

15.4MPa 

 

15.3MPa 

 

0.60 

 

Pressuri

zer level 

5.400m 5.42m 0.37 

In modeling a system that reflects the status of RCS, 

the process we implemented is summarized in the 

following steps: 

1. The full RCS is first simulated using the 

RELAP5 code. To confirm model accuracy, this full 

RCS model is then debugged and the model 

calculations are compared with the measured 

steady-state operating condition. 

2. One of the loops in the RCS two-loop is selected 

to investigate the effectiveness of the method. The 

simulation model is debugged accordingly to ensure 

that simulated parameters are consistent with design 

parameters under all running conditions. The 

nodalization diagram of the RCS loop #1 modeling is 

as shown in Fig.2.  

3. Incipient cracks are simulated in the inlet plenum 

of the steam generator of the loop #1. Figure 3 shows 

the implementation in RELAP5. The break simulating 

valve junctions provide a break flow path and the 

break size is determined by adjusting the flow area of 

the valve junction.  

4. Data from the simulated faults are pre-processed 

and used to train the distributed SVR model. 

5. To improve the performance of the SVR model, 

first different solver algorithm was tested on the model. 

Then an optimization algorithm is used to select 

features for the SVR.  

6. The trained SVR is initialized after obtaining the 

related, real-time parameters indicating the steady 

state and the simulated fault states of the sub-unit, and 

the SVR performance is evaluated on the test data. 

 

3.2. Model uncertainties and incipient faults 

description  

This section describes the simulated fault sizes in the 

plant model. The in-built fault diagnosis system in 

most nuclear power plants can detect cracks around 

70mm in length, with break flow rate above 0.5kg/s 
[17]. Hence, we classify breaks below this threshold as 

incipient. Consequently, cracks in the inlet plenum 

without Safety Injection System (SIS) activation are 

selected as a case study to verify the SVR model. 

Since the break flow is within the makeup capacity of 

the charging system, an automatic reactor trip will not 

occur and if the faults are rapidly detected and 

diagnosed, controlled shutdown of the reactor would 

be performed utilizing the appropriate non-emergency 

procedures.  
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Figures 3, 4, 5, 6 and 7 are used to describe the cracks 

and the corresponding deviations in plant parameters 

as the size of the fault increases. The model 

nodalization for the crack in the inlet plenum is as 

depicted in Fig.3. After operating the plant in 

steady-state for 50s, the crack sizes are adjusted, and 

their corresponding parameters were observed for 

1000s. Fig.4 shows the change in the break flow with 

time. Also, Fig.5 shows the changes in the primary 

temperature as the severity of the fault increases. 

Similarly, Fig.6 and 7 show the variation of the system 

pressure and pressurizer level as a function of time of 

fault occurrence. 
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Fig.2 Re-nodalized loop #1 of the Reactor Coolant 

System. 
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Fig.3 The model nodalization for the inlet plenum crack.  
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Fig.4 Break flow variation with different crack sizes. 
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Fig.5 Changes in primary temperature with crack sizes. 
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Fig.7 Pressurizer water level change with sizes. 

 

4 Simulation result and analysis 

For support vector regression task, the performance of 

the model relies heavily on the amount and quality of 

training samples as well as the selected kernel 

function. Also, selecting appropriate SVR 

hyper-parameter such as the kernel function and 

kernel width (for Gaussian kernel) and  -insensitive 

loss requires diligent experimentation. To this end, we 

utilized the automatic hyper-parameter selection 

capability of MATLAB machine learning toolbox and 

experimented with different solver algorithms and 

kernel functions. 

 

The steady state and fault condition plant data 

generated from RELAP5 was utilized for the selection 

of appropriate regression model. With 12-dimensional 

attributes (parameters) of 8510 observations 

(instances) as the data sample, a nonlinear SVR model 

was trained, and we experimented with different 

model parameters. First, to reduce convergence time 

for all experimental iterations, the data was 

standardized, and duplicate observations in the data 

were replaced with a single observation with weight 

equal to the sum of the weights of the corresponding 

removed duplicates. Subsequently, we partitioned the 

data into a training set (70%) and a test set (30%). The 

training set is used to fit the SVR model, and the test 

set is reserved to evaluate the performance of SVR. 

We utilized the MATLAB function fitrsvm, a function 

that trains and cross-validates a support vector 

regression model on a low-through 

moderate-dimensional predictor data set. The 

fitrsvm function supports mapping the predictor data 

using kernel functions and supports three solver 

algorithm options - Sequential Minimal Optimization 

(SMO), Iterative Single Data Algorithm (ISDA), and 

L1 soft-margin minimization via quadratic 

programming (L1QP) - for objective function 

minimization. Detail description of the solver 

algorithms can be found in [18]. Consequently, we 

experimented with different supported kernel 

functions with different solver algorithms and 

generated their respective relative errors (MSE). Table 

3 shows the result obtained when SVR model was 

trained directly with 12 features. The table shows 

Re-substitution Mean Squared Error (average over 10 

runs) without feature selection methods considered 

over Inlet plenum crack datasets for SVR model using 

different solver algorithm and kernel functions. The 

best result is shown in bold. 

 

Table 3: R-MSE without feature selection considered over 

Inlet plenum crack dataset. 

No of 

Iteration 

Solver  Kernel 

Function 

Resub. 

MSE 

608 SMO Linear 0.0083 

107676 ISDA Linear 0.0204 

9 L1QP Linear 0.0084 

1475 SMO Gaussian 0.0244 

289 ISDA Gaussian 0.0633 

7 L1QP Gaussian 0.0702 

1000000 SMO Polynomial  6.4782e+07 

1000000 ISDA Polynomial 0.1565 

7 L1QP Polynomial 1.4770e+05 

 

It is observed that the SVR model with soft-margin 

minimization via quadratic programming solver 

algorithm with Linear kernel function shows the 

minimum mean squared error of 0.0084 after 9 

iterations. Also, it is observed that SMO with Linear 

kernel has the least error (0.0083) but it takes a longer 

time to converge compared with L1QP. 

 

To further optimize the performance of the SVR 

model, all experiments were repeated using the 

features selected by GA. The optimization is an 

experimental search over four (4) features selected by 

GA. We ranked the features based on their fitness 

values, using the feature selection algorithms, and the 

MSE results obtained using different solver 

algorithms were compared. The required output is the 

regression with the minimum estimated 
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cross-validation loss (MSE) and the result is as shown 

below. With the GA feature selection algorithm, Fig.8 

shows the fitness function plot for 8 generations, and 

Table 4 shows the MSE result. The table shows the 

Re-substitution Mean Squared Error (average over 10 

runs,) of GA feature selection methods considered 

over inlet plenum crack datasets for SVR model using 

different solver algorithm and kernel functions. The 

best result for each number of features is shown in 

bold. 

 

Table 4: R-MSE with GA feature selection considered 

No of 

Iteration 

Solver  Kernel 

Function 

Resubstitutio

n MSE 

4931 SMO Linear 0.0080 

205847 ISDA Linear 0.0213 

10 L1QP Linear 0.0067 

197 SMO Gaussian 0.1218 

179 ISDA Gaussian 0.1395 

8 L1QP Gaussian 0.1266 

1000000 SMO Polynomial 1.2323e+11 

1000000 ISDA Polynomial 0.2244 

8 L1QP Polynomial 163.8688 

It is observed in Table 4 that L1QP with Linear kernel 

have the least MSE value of 0.0067 after 10 iterations. 

A similar trend is noticed in Table 3, where Linear 

L1QP has less MSE value and the least number of 

iteration. However, the SVR model trained with GA 

selected features gives the least MSE. It is also seen 

that the proposed feature selection method reduces the 

false alarm rate by 20%. That is, there is 20% 

reduction in the false alarm rate, as the MSE value is 

reduced from 0.0084 to 0.0067. 

 
Fig.8 Fitness function curve for GA. 

 

Hence, comparing the algorithms’ MSE values and 

their number of iterations in Tables 3 and 4, it is 

observed that GA with soft-margin minimization via 

quadratic programming (L1QP) solver algorithm and 

Linear kernel function gives the best fault prediction, 

and its MSE is selected as the threshold, δi, (maximum 

allowable MSE as in Fig.1) for the system. Another 

observation is that the least MSE value for the 

estimated parameters will form the basis of the fault 

detection threshold which will be selected later as the 

criterion for the occurrence of a fault by the fault 

diagnosis process.  

 

In summary, on the representative data derived from 

the simulation of cracks in the inlet plenum of the CNP 

300 (Qinshan I) NPP steam generator, the best 

predictive SVR model is obtained using L1QP solver 

algorithm and Linear kernel function, with GA 

algorithm applied to select the most informative 

features.  

 

5. Conclusion and future work 

This work presents soft computing technique for crack 

detection in NPP, implementable on the plant’s 

operator support system. We propose a system where 

support vector regression model detects incipient, 

low-level faults and specifies the severity of the fault. 

The purpose of the SVR is to estimate the size of fault 

and to trigger an alarm in order to achieve timely 

intervention of the operator. To optimize the design of 

the SVR model, we utilized features that are 

signatures of the faults, selected using Genetic 

Algorithm. The data for training the model is obtained 

from the simulation of cracks in the Chinese CNP300 

pressurized water reactor, using RELAP5/SCDAP 

thermal-hydraulic system code. First, a nonlinear SVR 

model was trained with 12-dimensional parameters of 

8510 observations as the training sample, and relative 

errors (MSE) were compared using different SVR 

solver algorithms kernel functions. Then, GA feature 

selection algorithm is applied to select important 

features for the training of the SVR model. Different 

results from the feature selection algorithm were 

compared, and the best result, indicating the least 

MSE, is selected as the optimum design for the SVR. 

The feature selection performance curves for GA is 

shown in Fig.8 and the resulting performance 

evaluation of the SVR model is described in Table 4. 
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The diagnostic result derived from the experiment 

shows that: 

1. SVR model designed with soft-margin 

minimization via quadratic programming 

solver algorithm and linear kernel function 

has the best performance for the simulated 

fault. 

2. The proposed method diagnoses incipient 

crack event faster than conventional methods 

for the leak rate investigated. 

3. The method can be combined with existing 

leak detection techniques to form a robust and 

efficient diagnostic method implementable on 

operator support system. 

 

In practice the choice of which feature selection 

method to use for a particular system calls for 

procedures of comparison and validation in order to 

guide the choice of the adequate approach for a given 

situation. Our next research focus would be on the 

comparative analysis of feature selection algorithms 

and procedure to adaptively train the SVR model 

online. 
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