

148 Nuclear Safety and Simulation, Vol. 9, Number 2, December 2018

A voxelization modeling algorithm for point-kernel simulations

on 3dsMax files

YANG Li-qun1, LIU Yong-kuo2, and LI Meng-kun3

1. Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001,

China (hanyangrensheng@163.com)

2. Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001,

China (lyk08@126.com)

3. Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001,

China (18845594647@126.com)

Abstract: A voxelization modeling algorithm based on tetrahedral three-dimensional (3D) scan conversion for

point-kernel gamma ray calculations is proposed in this paper. The arbitrarily shaped geometries of radiation

environment are built by 3dsMax software and the properties of the radiation source and shield material are

given directly in the 3DS format file. The voxelization algorithm converts irregular geometry into a compressed

voxel model for point-kernel calculation. The algorithm can handle arbitrarily shaped geometries: with or

without holes, self-intersecting, manifold or non-manifold. It has fast calculation speed and good shape

adaptability.

Keyword: voxelization algorithm; point-kernel simulation; radiation field calculation; 3dsMax

1 Introduction1

In order to calculate the gamma ray radiation field, a

series of computational tools were developed based on

the point-kernel approach, such as PUTZ [1] and QAD
[2]. The method of gamma ray calculation has two main

steps: implementation of 3D geometries for radiation

environment simulation and dose calculation.

The implementation of 3D geometries for radiation

environment simulation is a time consuming work.

Each computational tool uses textual description and

supplies its own scripting language, which makes the

creation of geometries a nontrivial undertaking.

This difficulty can be avoided by developing a visual

automatic geometric modeling interface or a custom

convertor. For example, Borglund et al. developed a

computer code package that handles geometric

descriptions exported from Computer-aided design

(CAD) applications for Monte Carlo simulation of

particle transport [3]. This package replaces the part of

some MC codes that handles geometry information

and simplifies the preparation of MC simulations for

complex geometric systems with a large number of

objects or with complicated shapes. Theis et al.

proposed a computer code called SimpleGeo, which is

Received date: November 3, 2018

(Revised data: January 10, 2019)

a solid modeler that combines Constructive Solid

Geometry (CSG) and boundary representations [4].

This hybrid architecture allows for rapid and flexible

visualization and creation of solid models for radiation

transport codes, but the solid model built is simple.

For existing gamma ray calculation codes, quickly and

accurately converting arbitrarily shaped geometries

into models that can be used for dose calculations is

still a difficult work. A viable method is converting

geometries from their continuous geometric

representation into a set of voxels that approximates it.

For example, Karabassi et al. proposed a fast and

simple voxelization algorithm based on z-buffer [5].

However, this method can only be applied to a

restricted subset of closed solids. Li et al. proposed a

hardware acceleration voxelization method [6]. The

method is based on the technique known as “deep

delamination” that uses the stencil buffer to compute a

list of voxel layers in each axis direction. But this is a

boundary-only voxelization method. Rueda et al.

proposed a fast CPU-based algorithm for handling a

wide variety of polyhedral solids: with or without

holes, self-intersecting, manifold or non-manifold [7].

Unlike previous approaches, the algorithm can

implement voxelization within a solid.

A voxelization modeling algorithm for point-kernel simulations on 3dsMax files

 Nuclear Safety and Simulation, Vol. 9, Number 2, December 2018 149

In order to convert arbitrarily shaped geometries to the

models used in point-kernel calculation, a voxelization

modeling algorithm based on tetrahedral 3D scan

conversion is proposed in this paper. The 3D

geometries of radiation environment are built by

3dsMax software and the properties of the radiation

source and shield materials are given directly in the

3DS format file. The voxelization algorithm converts

irregular geometry into a compressed voxel model for

point-kernel calculation. The algorithm can handle

complex geometries: with or without holes, self-

intersecting, manifold or non-manifold. It has fast

calculation speed and good shape adaptability.

The rest of this paper is organized as follows: Section

2 introduces the voxelization modeling algorithm.

Section 3 shows the related experiments and results;

the paper is concluded in the last section.

2 Methodology

The structure of voxelization algorithm for arbitrarily

shaped geometries is shown in Fig.1. The whole

process can be divided into six steps.

1. Establish solid models in 3dsMax software.

2. Input the 3DS file in the program and create the

minimum bounding box for each solid object.

3. Construct tetrahedrons with origin and triangular

faces.

4. Scan each tetrahedron along the z-axis to get a series

of triangular sections.

5. Voxelize all triangular sections and store the

presence value of voxels in the 3D array buffer.

6. Build the voxel model based on the presence value

of voxels.

Construct tetrahedrons

Voxelize triangular section

Last triangular section?

Build the voxel model

Store the Presence value of voxels

Yes

No

 Scan tetrahedrons and get triangular sections

Next triangular section

3DS file

Build bounding boxes for each solid object

Voxel model

Fig.1 The structure of voxelization modeling algorithm.

2.1 Establish solid model in 3dsMax

The arbitrarily shaped geometries are built visually

with exact dimension information of radiation

environment in the 3dsMax software.

In order to reduce the input process, the solid model is

built using a naming format. As shown in Table 1, the

keyword for source objects is "SO", and the keyword

for shield objects is "SH". The number of the object is

written directly behind the keyword. At the same time,

the material information of sources and shields are

provided to the material ball in the Material Editor.

Table 1 3dsMax naming format

Objec

t

Keywor

d

Object naming

format

Material

naming format

Sourc

e
SO

SO,Source

number

Energy,Intensit

y

Shield SH
SH,Shield

number

Density,Actomi

c number

The solid model is imported as a 3DS format file. The

solid model can be described by a curve mesh, which

consists of a series of triangular patches.

2.2 The theoretical basis of voxelization modeling

algorithm

(a) (b) (c)
Fig.2 The voxelization of a teapot. (a) Solid model. (b) Curved

mesh. (c) Voxel model.

In order to calculate the dose rate of arbitrary

geometries, the voxelization modeling algorithm is

proposed for the conversion of solid model to voxel

model (see Fig.2). The theoretical basis for the solid

model voxelization modeling algorithm is the point-

in-tetrahedron inclusion test of Feito et al. [8]. In this

paper, the following definition expresses the inclusion

in a more useful way [9]:

Definition. Let G be a solid model and O be the origin

of G. Let T1, T2, ⋯, Tn be tetrahedrons composed of O

and each triangular face of G (See Fig.3). Voxelize all

tetrahedrons to get all voxels V1, V2, ⋯, Vn. The voxel

model of G consists of voxels that appear odd times.

O = + +

Fig.3 Construct tetrahedrons with origin O and 12 triangular faces of

a box solid model.

YANG Li-qun, LIU Yong-kuo, and LI Meng-kun

150 Nuclear Safety and Simulation, Vol. 9, Number 2, December 2018

In order to reduce the computational cost of the

program, the center of all the vertices of a solid is

chosen as the origin O.

The main idea of the voxelization algorithm is to check

whether each voxel belong to the object or not and

assign to the voxel a value of odd or even respectively.

A voxel with an odd value belongs to the object, while

a voxel with an even value does not belong to this

object. The definition ensures that the voxelization

algorithm can deal with irregular solid models of

hollow, perforated, self-intersecting, penetrating and

so on.

2.3 Voxelization based on tetrahedral 3D scan

conversion

Let △ABCD be an arbitrary tetrahedron of a solid, and

w be the width of the voxel. Sort the vertices of the

tetrahedron according to the z coordinate. As shown in

Fig.4.a, let D (Dx,, Dy, Dz) be the vertex with the

smallest z coordinate, C (Cx,, Cy, Cz) the next, and so

on with B (Bx,, By, Bz) and A (Ax,, Ay, Az). The key steps

of tetrahedral 3D scan conversion are given as follows.

P0
 P1

P2

P2

P1

P0

P3

P2

P1

P0

sweep plane

(a) (b)

B

A

C

D

Bz≤zs≤Az

Cz≤ zs≤Bz

Dz≤zs≤Cz

x y

z

Fig.4 Scan the tetrahedron to get a series of triangles. (a) Scan

△ABCD along the z-axis. (b) Triangles of different intervals.

(1) Scan the tetrahedron along the z-axis to get a series

of triangular sections.

The scanning plane moves along the z-axis with a

scanning pitch w. A series of triangular sections are got

when scanning plane scans from zs = Dz to zs = Az.

Assuming that the z coordinates of the four vertices A,

B, C and D are different. When the scanning plane zs

is in the interval Dz ≤ zs ≤ Cz and Bz ≤ zs ≤ Az, the

scanning plane and the tetrahedron have three

intersection points P0, P1 and P2, and a triangular

section △P0P1P2 is formed (see Fig.4.b). When zs is in

the interval Cz ≤ zs ≤ Bz, there are four intersection

points P0, P1, P2 and P3 between the scanning plane

and the tetrahedron, and two triangular sections

△P0P1P2 and △P0P2P3 are formed.

When the scanning plane zs=zi intersects the side AB,

the intersection of AB is calculated as:

i yi x i z

x x y y z z

y Bx B z B

A B A B A B

 
 

  

(1)

then

()

()

i z
i x x x

z z

i z
i y y y

z z

z B
x B A B

A B

z B
y B A B

A B


 










  







(2)

For the other sides, the intersections are calculated by

a similar method.

(d) Az = Bz = Cz

BA

C

D

A

B C

D
(b) Bz = Cz

B

C

D

A

(a) Az = Bz

A

B

C D
 (c) Cz = Dz

B

C D

A

 (e) Bz = Cz = Dz

x y

z

Fig.5 Different situations of tetrahedrons.

If the z-coordinates of two vertices are equal (see

Fig.5.a-c), the calculation method of intersections is

the same as above. If the z-coordinates of three vertices

are equal and the scanning plane is coincident with the

three vertices (see Fig.5.d-e), the triangular section

consisting the three vertices is used directly in the next

step.

(2) Voxelize all triangular sections and build the voxel

model based on the presence value of voxels.

Build the 3D array buffer based on minimum

bounding box of the object. The 3D array buffer has

the same dimensions as the voxel space. It is used to

store the presence values of the relevant voxel.

Let △abc be a triangular section of a tetrahedron.

Assuming that the y coordinates of three vertices a (ax,

ay, zs), b (bx, by, zs) and c (cx, cy, zs) are different. Sort

A voxelization modeling algorithm for point-kernel simulations on 3dsMax files

 Nuclear Safety and Simulation, Vol. 9, Number 2, December 2018 151

the vertices of △abc in y coordinate. Let c be the

vertex with the smallest y coordinate, b the next, and

so on with a. △abc is scanned along the y axis with a

scanning pitch w. The scan line ys = yi begins at ys = cy

and ends at ys = ay. When the scan line intersects the

side ac, the x coordinate of the intersection is

calculated as:

()
i y

i x x x

y y

y c
x c a c

a c


  



(3)

For the other sides, a similar approach is used.

(a)

(b)

y

x

a b

c

scan

line

y

x

a

b c
scan

line

(c)

(xi, yi)

y

scan line

 ys = yi

x

b

c

a

t1

 t2

 t3

w

Fig.6 Voxelize triangular section. (a) Scan line intersects edge

ac at (xi, yi). (b) ys = as = bs. (c) ys = bs = cs.

After all intersections are obtained, the presence value

of the relevant voxel inside the triangle is incremented

by one in the 3D array buffer. When a voxel coincides

with an intersection point and locates on the left side

of Δabc as t1 in Fig.6.a, the presence value of voxel

plus 1. Conversely, if the intersection is on the right

side as the point t2 and point t3 in Fig.6.a, the presence

value plus 0.

When ys = as = bs, the presence values of coincident

voxels plus 1 (see Fig.6.b). When ys = bs = cs, the

presence values of coincident voxels plus 0 (see

Fig.6.c).

The odd-number value voxels that occur in the 3D

array buffer belong to the solid, and the opposite

occurs when the number is even. Build of the voxel

model by the odd-number value voxels.

2.4 Compress the voxel model

Sphere

w=2cm w=4cm

Straight

Pipe

w=1cm

Fig.7 Voxel models for sphere and straight pipe when w =

1cm, w = 2cm and w = 4cm.

In order to calculate the radiation dose of a voxelized

source, the voxels are used as point kernels for point-

kernel simulation. As shown in Fig.7, the larger the

width of the voxel, the greater the simulated error. In

order to improve the accuracy of the radiation dose

calculation, it is necessary to reduce the width of the

voxel, which leads to an increase in calculation time.

In order to improve computational efficiency while

maintaining accuracy, it is desirable to compress

voxels to reduce the number of voxels used for dose

assessment. The basic idea of voxel compression is to

compress adjacent voxels into a series of depth

elements (dexel) [10].

(a) (b) (c)

Fig.8 Compress the voxel model. (a) Build bounding box. (b)

Divide the bounding box into a series of cubes. (c) Determine

whether the cube is filled with full voxels.

The method of voxel compression is shown in Fig.8.

At first, build the bounding box of the voxel model

(see Fig.8.a). Next, divide the bounding box into a

series of cubes according to the dexel width (see

Fig.8.b). In the end, determine whether the cube is

filled with full voxels. If so, these voxels in cube are

compressed into a dexel. The new compressed model

is consisted of compressed dexels and uncompressed

voxels.

YANG Li-qun, LIU Yong-kuo, and LI Meng-kun

152 Nuclear Safety and Simulation, Vol. 9, Number 2, December 2018

3 Experiments and results

In this paper, a voxelization algorithm has been

proposed for converting the arbitrarily shaped

geometries of radiation environment into voxel

models. In order to verify the accuracy and validity of

the algorithm, a series of simulation experiments were

designed in this section. The first simulation

experiment was run to illustrate the geometric

modeling capability of the algorithm. The second

simulation experiment was run to verify the validity of

the voxel model compression. All simulation

experiments presented in this work were tested on a

Core i5 3.33GHz processor with 3.49GB of RAM

memory. All the algorithms have been implemented in

C ++, using the same compiler and optimizations.

3.1 Basic geometries voxelization modeling

Hemisphere shellCone

100

100

100 100

50

Cube

46
50

100
46

50

Tube

Fig.9 Four basic geometries used in experiments. The upper

model is the original model and the lower model is the voxel

model. The dimensions are in cm.

Since complex geometries consist of basic geometries,

four basic geometries were used to test the geometric

modeling capability of the voxelization algorithm. The

four geometries are cube, cone, tube and

hemispherical shell, where the convex surface,

concave surface, flat surface and their combination

were considered. Since the larger the voxel width, the

larger the simulation error, we set the voxel width of

the four basic geometries to 4 cm to produce a large

error situation.
Table 2 Compare the volume between original models and

voxel models

Basic

geometrie

s

Model volume (cm3) Deviation

(%)

Time

(ms) Original Voxel

Cube 1000000 986560 1.34 22

Cone
261799.3

8
259136 -1.02 24

Tube
120637.1

6
121600 0.80 28

Shell 57939.35 58880 1.62 41

The four basic geometries with specific dimensions

and the voxel models are shown in Fig.9. It can be

observed that the voxel model can accurately simulate

the original model. The modeling results are shown in

Table 2. It can be seen that after voxelization, the

relative volume deviation between original models

and voxel models is less than 1.7%, indicating that the

algorithm can accurately simulate the original model.

In addition, we can see that the modeling time is less

than 42 ms, which shows that the algorithm can

convert the solid model into voxels in real time.

3.2 Voxel model compression

In the point-kernel calculation, voxels and dexels can

be used directly as point kernel. Obviously,

compressing voxels can effectively reduce the number

of point kernels and improve the efficiency of point-

kernel calculation. In order to demonstrate the

efficiency of the voxel compression method presented

in this paper, we performed the voxel compression on

the cube and cone used in the previous experiment.

Cube

Cone

Dexel width = 1 Dexel width = 2Dexel width = 2 Dexel width = 3Dexel width = 3
Fig.10 Compress the voxel model of cube and cone. The voxel

width is 4 cm, and the dexel width is 1, 2 and 3.

As shown in Fig.10, the voxel width of voxel model is

4 cm, and the dexel width is 1 (no compression), 2 and

3. The number of point kernels under different

compression conditions is shown in Table 3. After

compression, the number of point kernels of the cube

decreased from 15415 to 3039, and the number of

point kernels of the cone decreased from 4049 to 1214.

The compression results demonstrate the effectiveness

of the voxel compression method.

A voxelization modeling algorithm for point-kernel simulations on 3dsMax files

 Nuclear Safety and Simulation, Vol. 9, Number 2, December 2018 153

Table 3 Number of point kernels in different conditions

Shapes
Dexel

width

Point kernels’ number

Voxel Dexel Total

Cube

1 15415 0 15415

2 2215 1650 3865

3 2563 476 3039

Cone

1 4049 0 4049

2 809 405 1214

3 1565 92 1657

4 Conclusions

A voxelization modeling algorithm based on

tetrahedral 3D scan conversion for point-kernel

gamma ray calculations is proposed. The geometric

capability of algorithm was verified by simulating

basic geometries, which include convex surface,

concave surface, flat surface and their combination. In

the voxel compression experiment, compressing

voxels can effectively reduce the number of point

kernels.

Compared with the existing similar methods, the

major advantage of this algorithm is that it can visually

perform geometric modeling for arbitrary shape 3D

geometries using the modeling capabilities of 3dsMax

without writing the textual description. Using the

voxelization modeling method, the proposed

algorithm can automatically convert arbitrary shape

solid models to voxel models, which makes the

modeling more flexible. The algorithm can handle

arbitrarily shaped geometries: with or without holes,

self-intersecting, manifold or non-manifold. It has fast

calculation speed and good shape adaptability.

Acknowledgements

This research work was funded by Decommissioning

of Nuclear Facilities and Radioactive Waste

Management Research, Fundamental Science on

Nuclear Safety and Simulation Technology Laboratory,

Harbin Engineering University. Project supported by

the Natural Science Foundation of Heilongjiang

Province, China (Grant NO.A2016002), the technical

support project for Suzhou Nuclear Power Research

Institute(SNPI)(NO.029-GN-B-2018 -C45-P.0.99-

00003), the Foundation of Science and Technology on

Reactor System Design Technology Laboratory (HT-

KFKT-14-2017003) and the project of Research

Institute of Nuclear Power Operation

(No.RIN180149-SCCG).

References
[1] INGERSOLL, D.T.: User's manual for PUTZ: a point-

kernel photon shielding code. Oak Ridge National Lab,

1986.

[2] ZHANG, L., Li, C., ZHANG, Y., and ZHANG, C.: Gad-

cga:an improved version of qad-cg (a point kernel code

for neutron and gamma-ray shielding calculations with

combinatorial geometry technique), Nuclear Power

Engineering, 1988.

[3] BORGLUND, N., ERIKSSON, J., FUMERO, E., KJÄLL,

P., MÅRTENSSON, L., and ORSHOLM, C., et al.:

Geometry package for monte carlo simulations on cad

files, Nuclear Inst & Methods in Physics Research A,

2004, 525(1), 417-420.

[4] THEIS, C., BUCHEGGER, K. H., BRUGGER, M.,

FORKEL-WIRTH, D., ROESLER, S., and VINCKE, H.:

Interactive three-dimensional visualization and creation

of geometries for monte carlo calculations, Nuclear Inst

& Methods in Physics Research A, 2006, 562(2), 827-829.

[5] KARABASSI, E. A., PAPAIOANNOU, G., and

THEOHARIS, T.: A fast depth-buffer-based voxelization

algorithm, Journal of Graphics Tools, 1999, 4(4), 5-10.

[6] Li, W., Fan, Z., Wei, X., and KAUFMAN, A.: Flow

simulation with complex boundaries, Gpu Gems, 2005.

[7] RUEDA, A. J., SEGURA, R. J., FEITO, F. R., MIRAS, J.

R. D., and OGYAR, C.: Voxelization of solids using

simplicial coverings. Václav Skala - UNION Agency,

2004.

[8] FEITO, F. R., and TORRES, J. C.: Inclusion test for

general polyhedral, Computers & Graphics, 1997, 21(1),

23-30.

[9] OGÁYAR, C.J., RUEDA, A.J., SEGURA, R.J., and

FEITO, F.R.: Fast and simple hardware accelerated

voxelizations using simplicial coverings, Visual

Computer, 2007, 23(8), 535-543.

[10] VAN HOOK, T.: Real-time shaded NC milling display,

Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH. DBLP, 1986, Vol.20, 15-20.

