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Abstract: A voxelization modeling algorithm based on tetrahedral three-dimensional (3D) scan conversion for 

point-kernel gamma ray calculations is proposed in this paper. The arbitrarily shaped geometries of radiation 

environment are built by 3dsMax software and the properties of the radiation source and shield material are 

given directly in the 3DS format file. The voxelization algorithm converts irregular geometry into a compressed 

voxel model for point-kernel calculation. The algorithm can handle arbitrarily shaped geometries: with or 

without holes, self-intersecting, manifold or non-manifold. It has fast calculation speed and good shape 

adaptability.  
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1 Introduction1 

In order to calculate the gamma ray radiation field, a 

series of computational tools were developed based on 

the point-kernel approach, such as PUTZ [1] and QAD 
[2]. The method of gamma ray calculation has two main 

steps: implementation of 3D geometries for radiation 

environment simulation and dose calculation.  

 

The implementation of 3D geometries for radiation 

environment simulation is a time consuming work. 

Each computational tool uses textual description and 

supplies its own scripting language, which makes the 

creation of geometries a nontrivial undertaking.  

 

This difficulty can be avoided by developing a visual 

automatic geometric modeling interface or a custom 

convertor. For example, Borglund et al. developed a 

computer code package that handles geometric 

descriptions exported from Computer-aided design 

(CAD) applications for Monte Carlo simulation of 

particle transport [3]. This package replaces the part of 

some MC codes that handles geometry information 

and simplifies the preparation of MC simulations for 

complex geometric systems with a large number of 

objects or with complicated shapes. Theis et al. 

proposed a computer code called SimpleGeo, which is 
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a solid modeler that combines Constructive Solid 

Geometry (CSG) and boundary representations [4]. 

This hybrid architecture allows for rapid and flexible 

visualization and creation of solid models for radiation 

transport codes, but the solid model built is simple. 

 

For existing gamma ray calculation codes, quickly and 

accurately converting arbitrarily shaped geometries 

into models that can be used for dose calculations is 

still a difficult work. A viable method is converting 

geometries from their continuous geometric 

representation into a set of voxels that approximates it. 

For example, Karabassi et al. proposed a fast and 

simple voxelization algorithm based on z-buffer [5]. 

However, this method can only be applied to a 

restricted subset of closed solids. Li et al. proposed a 

hardware acceleration voxelization method [6]. The 

method is based on the technique known as “deep 

delamination” that uses the stencil buffer to compute a 

list of voxel layers in each axis direction. But this is a 

boundary-only voxelization method. Rueda et al. 

proposed a fast CPU-based algorithm for handling a 

wide variety of polyhedral solids: with or without 

holes, self-intersecting, manifold or non-manifold [7]. 

Unlike previous approaches, the algorithm can 

implement voxelization within a solid. 
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In order to convert arbitrarily shaped geometries to the 

models used in point-kernel calculation, a voxelization 

modeling algorithm based on tetrahedral 3D scan 

conversion is proposed in this paper. The 3D 

geometries of radiation environment are built by 

3dsMax software and the properties of the radiation 

source and shield materials are given directly in the 

3DS format file. The voxelization algorithm converts 

irregular geometry into a compressed voxel model for 

point-kernel calculation. The algorithm can handle 

complex geometries: with or without holes, self-

intersecting, manifold or non-manifold. It has fast 

calculation speed and good shape adaptability.  

 

The rest of this paper is organized as follows: Section 

2 introduces the voxelization modeling algorithm. 

Section 3 shows the related experiments and results; 

the paper is concluded in the last section. 

 

2 Methodology 

The structure of voxelization algorithm for arbitrarily 

shaped geometries is shown in Fig.1. The whole 

process can be divided into six steps. 

1. Establish solid models in 3dsMax software. 

2. Input the 3DS file in the program and create the 

minimum bounding box for each solid object. 

3. Construct tetrahedrons with origin and triangular 

faces. 

4. Scan each tetrahedron along the z-axis to get a series 

of triangular sections. 

5. Voxelize all triangular sections and store the 

presence value of voxels in the 3D array buffer. 

6. Build the voxel model based on the presence value 

of voxels. 

Construct tetrahedrons

Voxelize triangular section

Last triangular section?

Build the voxel model

Store the Presence value of voxels

Yes

No

 Scan tetrahedrons and get triangular sections

Next triangular section

3DS file 

Build bounding boxes for each solid object

Voxel model
 

Fig.1 The structure of voxelization modeling algorithm. 

2.1 Establish solid model in 3dsMax 

The arbitrarily shaped geometries are built visually 

with exact dimension information of radiation 

environment in the 3dsMax software. 

 

In order to reduce the input process, the solid model is 

built using a naming format. As shown in Table 1, the 

keyword for source objects is "SO", and the keyword 

for shield objects is "SH". The number of the object is 

written directly behind the keyword. At the same time, 

the material information of sources and shields are 

provided to the material ball in the Material Editor. 

Table 1 3dsMax naming format 

Objec

t 

Keywor

d 

Object naming 

format 

Material 

naming format 

Sourc

e 
SO 

SO,Source 

number 

Energy,Intensit

y 

Shield SH 
SH,Shield 

number 

Density,Actomi

c number 

The solid model is imported as a 3DS format file. The 

solid model can be described by a curve mesh, which 

consists of a series of triangular patches. 

 

2.2 The theoretical basis of voxelization modeling 

algorithm 

(a) (b) (c)  
Fig.2 The voxelization of a teapot. (a) Solid model. (b) Curved 

mesh. (c) Voxel model. 

In order to calculate the dose rate of arbitrary 

geometries, the voxelization modeling algorithm is 

proposed for the conversion of solid model to voxel 

model (see Fig.2). The theoretical basis for the solid 

model voxelization modeling algorithm is the point-

in-tetrahedron inclusion test of Feito et al. [8]. In this 

paper, the following definition expresses the inclusion 

in a more useful way [9]: 

Definition. Let G be a solid model and O be the origin 

of G. Let T1, T2, ⋯, Tn be tetrahedrons composed of O 

and each triangular face of G (See Fig.3). Voxelize all 

tetrahedrons to get all voxels V1, V2, ⋯, Vn. The voxel 

model of G consists of voxels that appear odd times. 

O = + +

 
Fig.3 Construct tetrahedrons with origin O and 12 triangular faces of 

a box solid model. 
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In order to reduce the computational cost of the 

program, the center of all the vertices of a solid is 

chosen as the origin O.  

 

The main idea of the voxelization algorithm is to check 

whether each voxel belong to the object or not and 

assign to the voxel a value of odd or even respectively. 

A voxel with an odd value belongs to the object, while 

a voxel with an even value does not belong to this 

object. The definition ensures that the voxelization 

algorithm can deal with irregular solid models of 

hollow, perforated, self-intersecting, penetrating and 

so on.  

 

2.3 Voxelization based on tetrahedral 3D scan 

conversion 

Let △ABCD be an arbitrary tetrahedron of a solid, and 

w be the width of the voxel. Sort the vertices of the 

tetrahedron according to the z coordinate. As shown in 

Fig.4.a, let D (Dx,, Dy, Dz) be the vertex with the 

smallest z coordinate, C (Cx,, Cy, Cz) the next, and so 

on with B (Bx,, By, Bz) and A (Ax,, Ay, Az). The key steps 

of tetrahedral 3D scan conversion are given as follows. 

P0
 P1

P2

P2

 

P1

P0

P3 

P2

 

P1

P0

sweep plane

(a) (b) 

B

A

C

D

Bz≤zs≤Az 

Cz≤ zs≤Bz 

Dz≤zs≤Cz

x y

z

 
Fig.4 Scan the tetrahedron to get a series of triangles. (a) Scan 

△ABCD along the z-axis. (b) Triangles of different intervals. 

(1) Scan the tetrahedron along the z-axis to get a series 

of triangular sections. 

The scanning plane moves along the z-axis with a 

scanning pitch w. A series of triangular sections are got 

when scanning plane scans from zs = Dz to zs = Az. 

Assuming that the z coordinates of the four vertices A, 

B, C and D are different. When the scanning plane zs 

is in the interval Dz ≤ zs ≤ Cz and Bz ≤ zs ≤ Az, the 

scanning plane and the tetrahedron have three 

intersection points P0, P1 and P2, and a triangular 

section △P0P1P2 is formed (see Fig.4.b). When zs is in 

the interval Cz ≤ zs ≤ Bz, there are four intersection 

points P0, P1, P2 and P3 between the scanning plane 

and the tetrahedron, and two triangular sections 

△P0P1P2 and △P0P2P3 are formed. 

 

When the scanning plane zs=zi intersects the side AB, 

the intersection of AB is calculated as: 

i yi x i z

x x y y z z

y Bx B z B

A B A B A B

 
 

  
  

(1) 
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(2) 

For the other sides, the intersections are calculated by 

a similar method. 

(d) Az = Bz = Cz  

BA

C

D

A

B C

D
(b) Bz = Cz  

B

C

D

A

(a) Az = Bz

A

B

C D
 (c) Cz = Dz

B

C D

A

 (e) Bz = Cz = Dz

x y

z

 
Fig.5 Different situations of tetrahedrons. 

If the z-coordinates of two vertices are equal (see 

Fig.5.a-c), the calculation method of intersections is 

the same as above. If the z-coordinates of three vertices 

are equal and the scanning plane is coincident with the 

three vertices (see Fig.5.d-e), the triangular section 

consisting the three vertices is used directly in the next 

step. 

 

(2) Voxelize all triangular sections and build the voxel 

model based on the presence value of voxels. 

Build the 3D array buffer based on minimum 

bounding box of the object. The 3D array buffer has 

the same dimensions as the voxel space. It is used to 

store the presence values of the relevant voxel. 

 

Let △abc be a triangular section of a tetrahedron. 

Assuming that the y coordinates of three vertices a (ax, 

ay, zs), b (bx, by, zs) and c (cx, cy, zs) are different. Sort 
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the vertices of △abc in y coordinate. Let c be the 

vertex with the smallest y coordinate, b the next, and 

so on with a. △abc is scanned along the y axis with a 

scanning pitch w. The scan line ys = yi begins at ys = cy 

and ends at ys = ay. When the scan line intersects the 

side ac, the x coordinate of the intersection is 

calculated as: 

( )
i y

i x x x

y y

y c
x c a c

a c


  


  

(3) 

For the other sides, a similar approach is used. 

(a) 

(b) 

y

x

a b

c

scan 

line

y

x

a

b c
scan 

line

(c) 

(xi, yi)

y

scan line

 ys = yi

x

b

c

a

t1

 t2

 t3

w

 
Fig.6 Voxelize triangular section. (a) Scan line intersects edge 

ac at (xi, yi). (b) ys = as = bs. (c) ys = bs = cs. 

After all intersections are obtained, the presence value 

of the relevant voxel inside the triangle is incremented 

by one in the 3D array buffer. When a voxel coincides 

with an intersection point and locates on the left side 

of Δabc as t1 in Fig.6.a, the presence value of voxel 

plus 1. Conversely, if the intersection is on the right 

side as the point t2 and point t3 in Fig.6.a, the presence 

value plus 0. 

 

When ys = as = bs, the presence values of coincident 

voxels plus 1 (see Fig.6.b). When ys = bs = cs, the 

presence values of coincident voxels plus 0 (see 

Fig.6.c). 

 

The odd-number value voxels that occur in the 3D 

array buffer belong to the solid, and the opposite 

occurs when the number is even. Build of the voxel 

model by the odd-number value voxels. 

 

2.4 Compress the voxel model 

Sphere

w=2cm w=4cm

Straight 

Pipe

w=1cm
 

Fig.7 Voxel models for sphere and straight pipe when w = 

1cm, w = 2cm and w = 4cm. 

 

In order to calculate the radiation dose of a voxelized 

source, the voxels are used as point kernels for point-

kernel simulation. As shown in Fig.7, the larger the 

width of the voxel, the greater the simulated error. In 

order to improve the accuracy of the radiation dose 

calculation, it is necessary to reduce the width of the 

voxel, which leads to an increase in calculation time. 

In order to improve computational efficiency while 

maintaining accuracy, it is desirable to compress 

voxels to reduce the number of voxels used for dose 

assessment. The basic idea of voxel compression is to 

compress adjacent voxels into a series of depth 

elements (dexel) [10]. 

(a) (b) (c) 

Fig.8 Compress the voxel model. (a) Build bounding box. (b) 

Divide the bounding box into a series of cubes. (c) Determine 

whether the cube is filled with full voxels. 

 

The method of voxel compression is shown in Fig.8. 

At first, build the bounding box of the voxel model 

(see Fig.8.a). Next, divide the bounding box into a 

series of cubes according to the dexel width (see 

Fig.8.b). In the end, determine whether the cube is 

filled with full voxels. If so, these voxels in cube are 

compressed into a dexel. The new compressed model 

is consisted of compressed dexels and uncompressed 

voxels. 
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3 Experiments and results 

In this paper, a voxelization algorithm has been 

proposed for converting the arbitrarily shaped 

geometries of radiation environment into voxel 

models. In order to verify the accuracy and validity of 

the algorithm, a series of simulation experiments were 

designed in this section. The first simulation 

experiment was run to illustrate the geometric 

modeling capability of the algorithm. The second 

simulation experiment was run to verify the validity of 

the voxel model compression. All simulation 

experiments presented in this work were tested on a 

Core i5 3.33GHz processor with 3.49GB of RAM 

memory. All the algorithms have been implemented in 

C ++, using the same compiler and optimizations. 

 

3.1 Basic geometries voxelization modeling 

Hemisphere shellCone

100

100

100 100

50

Cube

46
50

100
46

50

Tube

Fig.9 Four basic geometries used in experiments. The upper 

model is the original model and the lower model is the voxel 

model. The dimensions are in cm.  

 

Since complex geometries consist of basic geometries, 

four basic geometries were used to test the geometric 

modeling capability of the voxelization algorithm. The 

four geometries are cube, cone, tube and 

hemispherical shell, where the convex surface, 

concave surface, flat surface and their combination 

were considered. Since the larger the voxel width, the 

larger the simulation error, we set the voxel width of 

the four basic geometries to 4 cm to produce a large 

error situation.  
Table 2 Compare the volume between original models and 

voxel models 

Basic 

geometrie

s 

Model volume (cm3) Deviation 

(%) 

Time 

(ms) Original Voxel 

Cube 1000000 986560 1.34 22 

Cone 
261799.3

8 
259136 -1.02 24 

Tube 
120637.1

6 
121600 0.80 28 

Shell 57939.35 58880 1.62 41 

The four basic geometries with specific dimensions 

and the voxel models are shown in Fig.9. It can be 

observed that the voxel model can accurately simulate 

the original model. The modeling results are shown in 

Table 2. It can be seen that after voxelization, the 

relative volume deviation between original models 

and voxel models is less than 1.7%, indicating that the 

algorithm can accurately simulate the original model. 

In addition, we can see that the modeling time is less 

than 42 ms, which shows that the algorithm can 

convert the solid model into voxels in real time. 

 

3.2 Voxel model compression 

In the point-kernel calculation, voxels and dexels can 

be used directly as point kernel. Obviously, 

compressing voxels can effectively reduce the number 

of point kernels and improve the efficiency of point-

kernel calculation. In order to demonstrate the 

efficiency of the voxel compression method presented 

in this paper, we performed the voxel compression on 

the cube and cone used in the previous experiment.  

 

Cube

Cone

Dexel width = 1 Dexel width = 2Dexel width = 2 Dexel width = 3Dexel width = 3  
Fig.10 Compress the voxel model of cube and cone. The voxel 

width is 4 cm, and the dexel width is 1, 2 and 3. 

 

As shown in Fig.10, the voxel width of voxel model is 

4 cm, and the dexel width is 1 (no compression), 2 and 

3. The number of point kernels under different 

compression conditions is shown in Table 3. After 

compression, the number of point kernels of the cube 

decreased from 15415 to 3039, and the number of 

point kernels of the cone decreased from 4049 to 1214. 

The compression results demonstrate the effectiveness 

of the voxel compression method. 
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Table 3 Number of point kernels in different conditions 

Shapes 
Dexel 

width 

Point kernels’ number 

Voxel Dexel Total 

Cube 

1 15415 0 15415 

2 2215 1650 3865 

3 2563 476 3039 

Cone 

1 4049 0 4049 

2 809 405 1214 

3 1565 92 1657 

 

4 Conclusions 

A voxelization modeling algorithm based on 

tetrahedral 3D scan conversion for point-kernel 

gamma ray calculations is proposed. The geometric 

capability of algorithm was verified by simulating 

basic geometries, which include convex surface, 

concave surface, flat surface and their combination. In 

the voxel compression experiment, compressing 

voxels can effectively reduce the number of point 

kernels. 

 

Compared with the existing similar methods, the 

major advantage of this algorithm is that it can visually 

perform geometric modeling for arbitrary shape 3D 

geometries using the modeling capabilities of 3dsMax 

without writing the textual description. Using the 

voxelization modeling method, the proposed 

algorithm can automatically convert arbitrary shape 

solid models to voxel models, which makes the 

modeling more flexible. The algorithm can handle 

arbitrarily shaped geometries: with or without holes, 

self-intersecting, manifold or non-manifold. It has fast 

calculation speed and good shape adaptability.  
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