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Abstract: In nuclear power plant or marine nuclear power plant, mechanical devices that carry the important 

functions such as power transmission tends to age due to high-speed operation of components. If they cause a 

malfunction, it will have serious consequences. However, these devices and components usually generate 

vibration during operation, and there is often a close relationship between the signals generated by the vibration 

and the operating conditions. The effective monitoring and analysis of the relevant vibration signals enables the 

timely detection and elimination of equipment failures and other factors that endanger safety, then we can 

ensure the normal operation of equipment and facilities. The vibration signal measured in reality is a complex 

mixed signal from multiple unknown vibration sources, and sources of vibration signals need to be 

differentiated before signal analysis. In this context, blind source separation can be used. Simulation results 

show that the blind source separation algorithm based on particle swarm optimization can effectively separate 

signals, the convergence speed of the algorithm is fast. After adding the gradient information to optimize, the 

convergence speed slightly improves.   
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1 Introduction1 

The ecological deterioration caused by the economic 

development has made the world’s demands for 

energy conservation and emission reduction more 

urgent. Nuclear energy, one of the most efficient clean 

energy sources, which is increasingly used in nuclear 

power plants and ship nuclear power applications 

under the requirements of low-carbon development. 

However, nuclear fuel is radioactive. Once a nuclear 

leak is caused due to mechanical equipment failures in 

nuclear facilities, it will cause even more severe 

human and ecological impacts. The Fukushima 

nuclear accident and the Chernobyl accident that 

caused serious negative impact on the history of 

nuclear energy have confirmed this view at an 

incalculable price. 

 

In order to realize the goal of nuclear safety, during the 

operation of nuclear equipment, it is necessary to track 

and analyze its operating status, so as to discover 

potential threats in time and avoid accidents. Many 
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important nuclear devices usually contain rotating 

machinery. The abnormal state of the machine can 

change the vibration signal during operation. 

Therefore, the abnormal state of operation can be 

analyzed by observing the vibration signals of these 

devices [2]. However, due to the influence of the 

environment and acquisition equipment, the actual 

collected observation signals are usually complex 

signals obtained by mixing multiple signal sources 

through unknown methods. Such mixed signals 

cannot directly contribute to equipment fault 

diagnosis[3]. In this context, studying the source signal 

extraction and separation technology of nuclear 

equipment vibration is of great significance to nuclear 

equipment fault diagnosis and nuclear safety culture. 

 

2 Blind Source Separation 

The Blind Source Separation (BSS) algorithm is an 

effective method to separate the source signal from the 

monitored mixed signal according to certain 

conditions and assumptions in the case that the mixing 

method between the source signal and the signal is not 

known[4]. This method can be applied in nuclear 

equipment fault diagnosis technology. It is necessary 
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to select an appropriate independence criterion as an 

indicator of the degree of independence of blind 

source separation results, such as a non-Gaussian 

criterion[5]. Kurtosis is often used as a non-Gaussian 

measure. The kurtosis of a zero-mean real signal y is 

its fourth-order cumulant, defined as: 

     4 2 2E 3Ekurt y y y          (1) 

Normalize the formula above, then  

     4 2 2E E 3kurt y y y        (2) 

When the variance of the signal is 1, the above 

equation can be written as 

   4E 3kurt y y              (3) 

 

The formula shows that the kurtosis can be converted 

into a standard fourth-order moment and the 

fourth-order moment of the Gaussian distribution 

signal is  2 23E y , so its kurtosis is zero. Therefore, 

when kurtosis is equal to zero, y is a Gaussian 

distribution; when kurtosis is positive, y is a 

super-Gaussian distribution; when the kurtosis value 

is a negative value, y is a sub-Gaussian distribution. 

There is a positive correlation between the absolute 

value of kurtosis and the non-Gaussian of y . 

Therefore, the problem of blind source separation of 

observation signals can be transformed into the 

problem of solving the absolute value or square 

maximum of the observed signal kurtosis. If the 

maximum value can be found, it means that the 

separation of the observation signal is effective[6]. 

 

Many existing blind source separation algorithms use 

independent component analysis (ICA) methods[7-8]. 

In order to ensure that the basic ICA model can be 

estimated, it is necessary to set the following 

assumptions and constraints: each component is 

statistically independent; independent components 

must have a non-Gaussian distribution; the number of 

independent components is equal to the number of 

observed mixed signals; mixing matrix is reversible. 

To establish an ICA model, the objective function is 

usually selected first according to the independence 

criterion, then minimize or maximize the objective 

function. So the nature of the ICA method depends on 

the objective function and the optimization algorithm, 

and the optimization algorithm determines the 

performance of the blind source separation algorithm 

such as convergence speed and separation effect to a 

large extent. 

 

3 Particle Swarm Optimization 

algorithm and its improvement 

3.1 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a kind of 

optimization computing technology and it is an 

intelligent algorithm developed by simulating bird 

foraging behavior[9]. Particle swarm optimization 

algorithm is determined by less empirical parameters 

and is easy to control. And because of its theoretical 

parallelism, the convergence speed is very fast, so it 

has been well promoted. 

 

The initial particle of the standard PSO algorithm is a 

set of particles with random velocity and location. 

Each particle continuously flies within the search 

space and finds the optimal solution through iterative 

methods. During iteration, the particle is continuously 

updated according to the two "extreme values", 

constantly adjusting its position. The first extremum is 

called the individual extremum and is the optimal 

solution found by the particle itself. The individual 

extremum of the i-th particle is denoted 

as 1 2[ , , , ]i i i idP p p p L . The second extremum is 

called the global extremum. It is the optimal solution 

that the current population can find, denoted 

as 1 2[ , , , ]g g g gdP p p p L . When these two optimal 

solutions are found, the particles update their position 

and velocity according to: 

1 1

2 2

( 1) ( )

[( ) ( ) ( )]

[ ( )]

ij ij

ij j ij

gj ij

v t wv t

c r p t x t

c r p x t

 

 

 

  

( 1) ( ) ( 1)ij ij ijx t x t v t                (4) 

1 ,1i n j d      

 

Where 1c and 2c are positive constants called 

acceleration factors; 1r and 2r  are random numbers 

between [0, 1]; w is called the inertia weight; the 

j-dimension (1 )j d   of the position change 

range is ,max ,max[ , ]j jx x , and the speed range 

is ,max ,max[ , ]j jv v . During iteration, if a ijx  or ijv  

value in a certain dimension crosses the boundary, its 

value is set as the boundary value. At the beginning of 

the algorithm, the initial position and velocity of the 

particle swarm are randomly generated. Before the 
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stop condition is satisfied, the iteration is continued 

through equation (4). The universal adaptability of the 

standard PSO algorithm is a big advantage, but the 

algorithm lacks consideration of the special nature of 

the particular problem, and useful information such as 

gradients is often overlooked. And the standard PSO 

algorithm does not dynamically adjust the speed, 

resulting in weaker particle climbing ability, which 

leads to the late iteration performance of the algorithm 

significantly worse than the early performance [10]. 

 

3.2 gradient-accelerated PSO algorithm 

In order to solve the above problem, it is possible to 

properly inject some gradient information in the 

process of the particle speed iteration update, which 

helps the particles to make highly targeted and more 

efficient movements. 

 

The gradient representation of the function ( )f x ，

1 2( , , , )nx x x Lx  is: 

1 2

( ) ( ) ( )
( ) [ , , , ]T

n

f f f
f

x x x

  
 

  
L

x x x
x       (5) 

Each time the particle updates its velocity and position, 

it completes the iteration according to equation (4) 

with the probability p , completes the iteration 

according to gradient information with the probability 

of (1 )p , and completes the update with a certain 

step length in the direction of the negative gradient. 

 

Adding gradient information can improve the 

convergence speed of the algorithm, but for some 

specific problems, adding gradient information makes 

it easier for particles to fall into the local optimal 

solution. Therefore, when considering gradient 

acceleration, it is necessary to debug the influence of 

gradient information on particle movement according 

to the characteristics of the problem. 

 

4 Simulation experiments and results 

In order to verify intuitively whether the above 

algorithm can achieve the desired effect, simulation 

experiments were conducted on the problem of 

mixed signal separation. In the experiment, 

standard signals were used to simulate the source 

signals, these signals were linearly mixed, and the 

resulting mixed signals to be separated and 

simulated the actual observation signals. The 

standard signals used in the experiment were: 
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In order to facilitate the comparison of multiple 

algorithms, the experimental results must be 

quantified. In the experiment, the correlation 

coefficient was used as the evaluation criterion to 

evaluate the similarity between the separation result 

and the source signal. Let the i-th source signal in the 

source signal vector s be is . The separated signal 

corresponding to signal is is jŝ . The correlation 

coefficient between the two signals is: 

 

i j

ij

i i j j

ˆcov( , )

ˆ ˆcov( , )cov( , )

s s

s s s s
            (6) 

 

Where cov( ) is the covariance. According to 

probability theory statistics knowledge, 
ij  must be 

less than 1, when ij =1, it means that is and jŝ are 

exactly the same, and when ij =0, it means that the 

two signals are independent statistics. 

 

In the experiment, the kurtosis is selected for the 

objective function, and each parameter is selected as 

follows: Population size is 50; learning factors 1c  

and 2c  are 2; the maximum particle speed maxv is 1; 

the inertia factor uses a Linear Decreasing Weight 

Strategy (LDW)[11-12] , min 0.4w  , max 0.9w  ; the 
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mixing matrix A is a randomly generated square 

matrix. The results of experiment 1 are shown in 

Fig.1. 

Fig.1 Experiment 1 source signal. 

Fig.2 Experiment 1 mixed signal. 

Fig.3 Experiment 1 separated signal. 

During the experiment, record the mixing matrix A as 

follows: 

0.049033 0.607082 0.770814 0.579727

0.423695 0.494042 0.113714 0.657231

0.608098 0.787197 0.355118 0.072574

0.810835 0.060461 0.491043 0.759289

A

 
 
 
 
 
 

 

The separation signal is shown in Fig.3. The signal 

waveform can well reflect the information it carries. 

By comparing Fig.1 and Fig.3, we can see that the 

separated signal obtained by the algorithm can well 

restore the source signal. The reduced sinusoidal 

signal and sawtooth signal are slightly coarser than 

the source signal, which is caused by errors in the 

calculation process. In order to evaluate the result, 

the similarity coefficient between the separated signal 

and the source signal is calculated. The blind source 

separation similarity coefficients of the standard PSO 

algorithm are as follows: 

Table 1 Similarity coefficient of experiment 1 

 Square 

wave 

signal z1 

Sawtooth 

signal z2 

Sinusodal 

signal z 

Random 

noise z4 

Sinusoida

l signal s1 

0.015144

13 

0.064941

29 

0.983770

39 

0.166580

60 

Square 

wave 

signal s2 

0.999800

83 

0.008656

33 

0.016279

93 

0.007636

98 

Sawtooth 

signal s3 

0.042671

00 

0.983463

29 

0.036419

52 

0.172199

76 

Random 

noise s4 

0.052642

47 

0.250347

34 

0.185254

19 

0.948807

59 

 

The separation matrix obtained from the experiment 

is: 

0.016910 -0.340221 -0.085743 -0.936275

-0.301260 0.861906 0.226261 -0.339359

0.496717 -0.070670 0.863886 -0.044462

0.813773 0.369286 -0.441761 -0.079035

W

 
 
 
 
 
 

 

In order to study the improved algorithm of the above 

algorithm, gradient information is introduced based on 

the standard PSO algorithm. In the experiment, the 

particles were updated with the probability of 0.1 

according to the gradient information and iterated with 

a probability of 0.9 according to formula (4). In order 

to better compare the algorithms before and after the 

optimization, the experimental parameters are 

consistent with the standard PSO algorithm, and the 

mixing matrix uses the matrix A recorded in the 
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previous experiment. Therefore, the source signal and 

the mixed signal of Experiment 2 are the same as 

Experiment 1, as shown in Fig.1 and Fig.2.  

 

Here only the separation signal of experiment 2 is 

given. The results of experiment 2 are as follows: 

Fig.4 Experiment 2 separated signal. 

By observing the waveforms before and after 

separation, it can be seen that the gradient-accelerated 

PSO blind source separation algorithm can also 

achieve the desired target well, and the separation 

effect is also good. Also due to the influence of the 

optimization calculation accuracy, the separation 

signal surface is not as smooth as the source signal. In 

the calculations, the sawtooth signal reversed phase 

due to the uncertainty introduced by the mixing matrix. 

This phenomenon may also occur in the standard PSO. 

The BSS similarity coefficient of gradient-accelerated 

PSO algorithm is shown in Table 2: 

Table 2 Similarity coefficient of experiment 2 

 Square 

wave 

signal z1 

Random 

noise z4 

Sinusodal 

signal z 

Sawtooth 

signal z2 

Sinusoida

l signal s1 

0.006080

32 

0.099510

65 

0.994307

79 

0.037585

49 

Square 

wave 

signal s2 

0.999987

67 

0.003554

95 

0.003093

90 

0.001562

44 

Sawtooth 

signal s3 

0.033797

22 

0.188537

27 

0.018432

01 

0.981311

21 

Random 

noise s4 

0.054395

51 

0.985812

58 

0.042123

81 

0.153102

08 

 

The separation matrix obtained from the experiment 

is: 

0.024915 0.911651 0.199300 0.358537

-0.304550 0.297893 0.243123 -0.871434

0.521302 -0.190139 0.831782 -0.015123

0.796788 0.209754 -0.457501 -0.334399

W

 
 
 
 
 
 

 

5 Comparison of experimental results 

It can be seen from the above two experimental results 

that the standard PSO blind source separation 

algorithm and the gradient-accelerated PSO blind 

source separation algorithm can solve the linear BSS 

problem well. By comparing the separated signal 

obtained by the algorithm and the source signal, it can 

be seen that the waveform can be well separated. 

Since the waveform contains the main information of 

the signal, it can be regarded as an excellent algorithm 

to achieve the goal of blind source separation. In the 

experiment process, before and after the optimization 

of the algorithm, some signals randomly appear to be 

reversed-phase in the separation process. This is due 

to the fact that matrix A is a randomly generated 

mixing matrix in the mixing process of the signal and 

introduces uncertainty into the observed signal. The 

algorithm cannot effectively recognize this 

uncertainty during the process. The waveform of the 

separated signal is not particularly smooth compared 

to the source signal. This is due to the fact that there 

are some errors in the particle optimization calculation 

during the calculation process. 

 

Through the calculation of the program, the 

correlation coefficients between the four separated 

signals and the source signals under the two 

algorithms have been given by the previous text. The 

magnitude of the obtained correlation coefficient also 

verifies the conclusion reached through the above 

waveform diagram. Compare the two algorithms as 

follows: 

Table 3 Comparison of similarity coefficient between 

experiment 1 and experiment 2 

 Sinusoid

al signal 

Square 

wave 

signal 

Sawtooth 

signal 

Random 

noise 

standard 

PSO   

0.983770

39 

0.999800

83 

0.983463

29 

0.948807

59 

gradient-a

ccelerated 

PSO   

0.994307

79 

0.999987

67 

0.981311

21 

0.985812

58 
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From the comparison of waveforms and correlation 

coefficients, the optimized algorithm has a slightly 

better separation effect than the standard particle 

swarm optimization-based BSS algorithm. In terms of 

the convergence speed of the algorithm, since each 

experiment has randomness, the closing speed cannot 

give a definite value, and comparison can be made 

through the convergence image. 

Fig.5 Comparison of the convergence speed between 

experiment 1 and experiment 2. 

 

From the convergence curve in Fig.5, it can be seen 

that after adding gradient acceleration information, the 

convergence speed of the algorithm is also accelerated, 

but this increase is not significant. This is because the 

convergence rate of the standard PSO algorithm itself 

is relatively fast, and the complexity of the linear blind 

source separation problem is not enough to highlight 

the advantages of this gradient-accelerated 

optimization algorithm. 

 

The fast convergence speed is a big advantage of the 

particle swarm optimization algorithm, but the 

algorithm also exposes some defects in the running 

process due to the convergence speed and other factors. 

In the process of carrying out a large number of 

repeated experiments, there is no guarantee that each 

separation is very good and there is a large deviation. 

This shows that the particles are trapped in the local 

optimal solution, resulting in failure of the 

optimization, and in the end, the resulting separation 

matrix can not achieve the desired effect. Especially 

when the gradient information is introduced, the 

convergence rate will further increase, and the 

problem of falling into the local optimal value will be 

more easily highlighted. Therefore, in the experiment, 

the adjustment of the probability
p

is very important. 

 

6 Conclusion and outlook 

The problem of mechanical fault diagnosis for some 

important nuclear equipment is similar to the problem 

of blind source separation. Solving the problem of 

BSS has important significance for nuclear safety 

culture. In this paper, simulation experiments are 

carried out to verify the effectiveness of the blind 

source separation algorithm based on PSO and the 

optimization algorithm after introducing gradient 

information to solve the linear blind source separation 

problem. 

 

From experiments, we can know that the blind source 

separation algorithm based on particle swarm 

optimization can solve the linear BSS problem. From 

the experimental results, it can be seen that the signal 

after reduction is similar to the standard signal used in 

the experiment. The similarity coefficient calculated 

from the experiment also confirms this conclusion. 

The restored signal image is not as smooth as the 

standard signal image, which is caused by the 

limitation of the search accuracy. This phenomenon 

can be accepted within a certain error range. From the 

observation, it can be seen that the program can 

effectively separate the linear mixed signal, and the 

convergence speed of the algorithm is fast. 

 

The data and figures given in the experiment can show 

that the optimized algorithm has further improved 

both in accuracy and convergence speed, which shows 

that the introduction of gradient information does 

improve the performance of the algorithm. 

 

There are also other phenomena in the experiment. 

Although the optimized program has a slight 

improvement in the convergence speed, in the process 

of solving random problems, if the gradient 

information occupies a large proportion, the algorithm 

is more likely to fall into the local optimal solution; on 

the contrary, it will not achieve the purpose of 

optimization. In view of this situation, we can 

consider introducing new methods to further modify 

and optimize the program. For example, considering 

the influence of parameters, we can adjust the learning 

factor from a constant to a dynamic learning factor, so 

that the particles can better escape from the local 
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optimum; or in the calculation process, some particles 

are re-randomly initialized according to appropriate 

conditions to increase the activity of the particles, so 

that the particles are more likely to reach the best 

value. 

 

The algorithm studied in this paper is far from the 

engineering application. In practice, the mixed signals 

observed in nuclear power plants or marine nuclear 

power plants are more complex. Because the signal 

mixing method is often non-linear, and the complex 

ambient noise may interfere with valuable signals, the 

complex blind source separation problem needs to 

consider more factors for further study. 
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