

124 Nuclear Safety and Simulation, Vol. 2, Number 2, June 2011

Research on software systems dependability at the OECD

Halden Reactor Project

SIVERTSEN Terje
1
, and ØWRE Fridtjov

2

1. Institute for Energy Technology, OECD Halden Reactor Project, Post Box 173, NO-1751 Halden, Norway (Terje.Sivertsen@hrp.no)

2. Institute for Energy Technology, OECD Halden Reactor Project, Post Box 173, NO-1751 Halden, Norway (Fridtjov.Owre@hrp.no)

Abstract: Two central issues related to software systems dependability are those of safety integrity and safety

demonstration. A proper understanding of these two issues are important for the selection of processes, methods,

techniques and tools to be used in the different life cycle phases of the software. Following a brief discussion on

the concept of software safety integrity and its relationship to software systems dependability, this paper gives

an introduction to research problems addressed by the OECD Halden Reactor Project within this area. The

paper concludes with a discussion on the important role of safety demonstration in this context.

Keywords: software systems dependability; safety integrity; safety demonstration

1. Introduction
1

The OECD Halden Reactor Project (HRP) is a joint

undertaking by national nuclear safety organizations

in 18 different countries, sponsoring a jointly financed

nuclear directed research programme under the

auspices of the OECD - Nuclear Energy Agency.

The organizations participating in the HRP represent a

comprehensive cross section of the nuclear

community, including licensing and regulatory bodies,

vendors, utilities, industry companies and research

organizations.

The two main research programs generate key

information for safety and licensing assessments. The

Fuels and Materials Research programs aim at

providing: i) Basic data on how the fuel performs in

commercial reactors, both at normal operation and

transient conditions, with emphasis on extended fuel

utilization, and ii) Knowledge of plant materials

behavior under the combined deteriorating effects of

water chemistry and nuclear environment.

The Man-Technology-Organization (MTO) research

programme aims at providing: Advances in human

performance, human factors, human-machine

interfaces and interaction, visualization technologies,

computerized surveillance systems and software

dependability issues, in support of development and

licensing of new and upgraded control rooms.

Received date: May 23, 2011

(Revised date: June 6, 2011)

The overall objective of the HRP’s research

programme on software systems dependability is to

contribute to successful development, assurance and

deployment of high integrity software within the

nuclear sector. The Halden Project activities within

this area concentrate on processes, methods,

techniques and tools for the different life cycle phases

of software important to safety. The activities aim at

providing lessons learned and recommendations on

the selection and use of means that are effective with

respect to providing software which meets the

demands for safety integrity placed upon it. In this

sense, the programme is addressed to all parties

involved in the development, assessment, approval,

operation and maintenance, including software

vendors, safety authorities and utilities.

The Halden Project work is based upon requirements

and recommendations in relevant international

standards and guidelines, as well as needs identified

by stakeholders. The research programme aims at

improving the knowledge on how to best implement

these requirements in real projects. This involves the

use of principles such as top-down design methods,

modularity, verification, validation, assessment,

configuration management and change control, and

the appropriate consideration of organisational and

personnel competency issues. The programme

involves both in-depth and in-breadth research related

to these principles, with the aim or providing lessons

learned and recommendations that help the different

parties develop, operate and maintain software that is

Research on software systems dependability at the OECD Halden Reactor Project

 Nuclear Safety and Simulation, Vol. 2, Number 2, June 2011 125

safe to put into use and that preserves its level of safety

integrity and dependability throughout its lifetime.

In order to extend the basis for recommendations and

lessons learned within this area, the programme

benefits from organised knowledge transfer from the

use of software in control and protection systems in

other industry sectors such as petroleum, air traffic

control and railway signalling.

Following a brief discussion on the concept of

software safety integrity and its relationship to

software systems dependability, this paper gives an

introduction to research problems addressed by the

Halden Project within this area. The paper concludes

with a discussion on the important role of safety

demonstration in this context.

2. Software safety integrity

A safe system is a system that is free of undesired

behaviors that can lead to system hazards. The system

must be able to perform its function under an

acceptable level of risk. Safety of a software based

system does not only concern the behavior of the

software and hardware, but also human factors related

to the use of and interaction with the system. One

example is the external interfaces of a system that

supervises a critical process. These interfaces must be

designed in such a way that the operator gets a correct

and adequate picture of the supervised process so that

it always can be operated in a safe manner.

Due to the nature of software, many current standards

and guidelines for development of software important

to safety focus on the methods to be used to avoid

systematic errors and thereby provide software which

meets the demands for safety integrity. This is

commonly done by adopting some notion of safety

integrity level (SIL), and giving different sets of

requirements relative to these levels.

The concept of SIL, or some variant of this, is adopted

for software based systems in several industrial

sectors and is supported by standards developed for

these sectors. Important standards in this context are

IEC (International Electrotechnical Commission)

61508
[1]

 (process industries, including petroleum) and

EN (European Norm) 50126
[2]

, EN 50128
[3]

, EN

50129
[4]

(railway applications). These standards give

requirements to the processes, methods, techniques

and tools to be used to implement the system functions

allocated to software: Higher safety integrity levels

means more rigid requirements. By adopting safety

integrity levels as a key concept, these standards tend

to move the focus from the possible (or impossible)

quantification of software dependability to a more

qualitative approach based on the use of accepted

combinations of methods in the design and

implementation of the software.

A concept similar to safety integrity levels, called

design assurance levels, has for a long time been

adopted for airborne systems and been supported by

the standard DO-178B
[5]

 (the prefix “DO” designates

documents from RTCA, Radio Technical Committee

on Aeronautics). The nuclear industry has so far not

adopted the SIL concept directly, but follows in

practice the principle of differentiating the

requirements depending on the class of application. A

notable example is the standard IEC 60880
[6]

, which

gives requirements to systems performing category A

functions (i.e. functions that play a principal role in the

achievement or maintenance of nuclear power plant

safety to prevent design basis events from leading to

unacceptable consequences, or whose failure could

directly lead to accident conditions which may cause

unacceptable consequences if not mitigated by other

category A functions
[7]

). Whether the nuclear industry

will arrive at a consensus regarding a common

approach to the use of safety integrity levels remains

to be seen. Currently, the practices in the different

countries seem to vary more than what is the case e.g.

within European railway. An important factor here is

to which extent the standards are designed to facilitate

cross acceptance on the basis of the safety approval

and acceptance made by another safety authority.

Within the European Union, such a harmonization of

the safety approval processes in the different member

countries is considered an essential part of the

development of the common market.

The use of safety integrity levels reflects a perspective

where functions and associated safety requirements

are allocated as part of a risk-based approach to the

establishment of the overall system requirements.

According to this perspective, the demands for

SIVERTSEN Terje, and ØWRE Fridtjov

126 Nuclear Safety and Simulation, Vol. 2, Number 2, June 2011

software safety integrity are an outcome of the

processes employed at the system level. It follows that

the software requirements are based on the functions

and associated safety requirements allocated to the

software as part of this process. As a consequence, the

demands for software safety integrity constitute an

input to the software development process. Since this

input comes from a process at the system level, it

focuses on the functions to be implemented in

software, and not on the software itself. It is however

not enough to analyze the primary system functions:

The establishment of safety requirements needs to

investigate the possible sequences of state transitions

and identify the states the system should never be able

to enter.

This way of integrating the software development

process in the overall system development process has

the important benefit of giving a clean interface

between these two processes. One of the practical

consequences is that the software process should not

determine the safety integrity of the functions

implemented – this need to be determined at the

system level.

The demands on software safety integrity should

reflect the risk (consequences and their probabilities)

associated to possible software errors: Higher risk

means higher demands on software safety integrity.

This can be concretized by defining a relationship

between tolerable hazards rates and software safety

integrity levels, as is done e.g. in the process industry

standard IEC 61508 and the railway specific standards

EN 50126, EN 50128 and EN 50129. By using the

safety integrity levels as a guide to the methods to be

used, this approach connects overall system risk to the

concrete methods, techniques, processes and tools

used for developing the software involved. The actual

process of determining the safety integrity levels on

the basis of the system risk needs however to be

defined specifically for the relevant industrial sector

or application area.

In general, the following can be considered as

activities at the system level, before the requirements

to the software are established: Risk analysis,

including the identification and assessment of hazards,

leading to the risk acceptance criteria, followed by

identification of the necessary risk reduction, the

establishment of the system safety requirements, the

selection of a suitable system architecture, and the

allocation of safety integrity levels to the different

subsystems and components. Among the outcomes of

this process at the system level are the required

software safety integrity levels, which constitute

inputs to the activities at the software level.

A consequence of this procedure is that the safety

functions, and their safety integrity levels, are

determined and allocated to software at the system

level. In this sense, this also determines the earliest

point of departure for the software development, at

least as far as safety is concerned.

3. The research problems

In spite of the fact that many software engineering

issues are still subject to research and development,

the field has reached a general consensus on much of

what characterizes an adequate engineering process

for software important to safety, such as:

 The software should be specified in terms of a

software requirements specification which is

traceable back to the system requirements and

forwards to its implementation.

 The software should be designed through the use

of methods which facilitate modular software

architecture, built up by the composition of

well-defined components (with well-defined

interfaces).

 The software should be developed through a

sequence of verifiable steps and phases.

 The software and its development process should

be documented in a way that facilitates validation,

safety demonstration and independent safety

assessment.

Many more examples could have been mentioned as

additional evidence to the emergence of a common

understanding between different industrial sectors

about the existence of some principles that govern the

production of software important to safety. This is

partly a result of, and partly a motivation for,

technology transfer between the different sectors.

These principles are important because they provide

important guidance to the recommendation and

selection of the processes, methods, techniques and

Research on software systems dependability at the OECD Halden Reactor Project

 Nuclear Safety and Simulation, Vol. 2, Number 2, June 2011 127

tools to be used in the software process. Due to their

large number and variation however, it is practical to

divide these into the types of activities they are meant

to support. Traditionally, this has typically been done

by defining some life cycle model (normally a variant

of the waterfall model), and associating the different

means to the phases of this model. Notwithstanding

the intention of allowing also other life cycle models,

standards and guidelines employing this way of

presenting their requirements and recommendations

have contributed to the widespread misconception that

the software development needs to follow this model.

Instead of relating their requirements to development

phases, standards should therefore relate their

requirements to the types of activities performed

(testing, verification, etc.). In this way, it becomes

easier to use the same standard for development

processes based on different life cycle models.

In the following subsections, some of the means

adequate for the development, assurance, approval

and deployment of software important to safety are

presented. For each of these groups of activities, a

discussion is given on some of the questions being

subject to research at the OECD Halden Reactor

Project.

3.1 Software development

Based on the specification of system and safety

requirements, the development of software starts by

establishing the software requirements and culminates

with the final acceptance of the software. Important

issues related to software development include how to

describe a complete set of requirements for the

software, meeting all system and safety requirements,

and how to develop a software architecture that

achieves these requirements, to identify and evaluate

the significance of hardware/software interactions for

safety, to achieve software which is analysable,

testable, verifiable and maintainable, and to

demonstrate that the software and the hardware

interact correctly to perform their intended functions.

An important activity in the early phases of the

software development is the elicitation of the software

requirements from the different inputs to the

requirements management process. Standards and

guidelines typically put more emphasis on the

structure and quality of the requirements specification

document than in the actual elicitation of the

requirements. It is commonly agreed which types of

requirements should be covered (functionality,

maintainability, etc.), how this should be expressed

(complete, verifiable, etc.), and so on, but little is

typically required of how this is achieved, in particular

how to elicitate a complete set of requirements.

Naturally, the question of completeness is in most

cases difficult to answer: When to stop searching for

more requirements? There is no general answer to this

question, and any general criterion for the

“completeness” of the requirements would probably

lack a scientific basis. The recommendation and

selection of methods to facilitate the requirements

elicitation process would therefore have to be based

on some evidence on how well the use of these

methods can reduce the risk of loosing essential

requirements. In any case, the software should be

“designed for change”, in the sense that possible new

or modified requirements emerging later in the

software lifecycle can be implemented without

compromising the software integrity. This should

however not be used as an excuse for relaxing the

importance of having a “complete” set of

requirements from the beginning.

Literature on requirements elicitation typically

mentions methods such as interviews, scenarios,

requirements reuse, etc. All of these are important and

useful means for elicitating requirements. An

important question is however how to better utilize the

intended relationship between the inputs to the

requirements elicitation process and the actual

requirements. Concretely, the fact that many of the

requirements typically can be considered some kind of

traceable “implementation” of requirements at the

system level indicates that there is some potential in

utilizing this relationship to improve, or possibly even

automate, parts of the requirements elicitation process.

While there certainly are cases where this is possible,

an important research question is whether it is possible

to formulate such an approach in terms of a

well-defined method, including the criteria which

need to be fulfilled in order to make the method

applicable and of course the pragmatics related to the

use of the method. An adequate research method

SIVERTSEN Terje, and ØWRE Fridtjov

128 Nuclear Safety and Simulation, Vol. 2, Number 2, June 2011

would be to demonstrate the approach on some

relevant examples, extract some essential,

case-independent characteristics of the examples,

formulate a method on basis of these characteristics,

and validate the method on other, relevant examples.

Another research problem related to development is

the question as to which processes, methods,

techniques and tools are the most effective for

generating design solutions appropriate for the

required safety and dependability. In particular, there

is a need for guidance on the safe use of advanced

technologies like adaptive control, multi-core

processors and field programmable gate arrays

(FPGAs). Such a research problem would go beyond

the requirements and recommendations typically

given in standards and guidelines, which need to be

generic for all software within their scope. The

research problem is twofold:

Firstly, there is a need for guidance on the selection of

appropriate design solutions. That is, given the

requirements to safety and dependability, which

design solutions provide the best possibilities with

respect to satisfying these requirements,

demonstrating that they indeed have been satisfied,

and supporting the assessment needed for the approval

of the software for its intended use.

Secondly, there is a need for guidance on the use of

given technologies. In many cases, the supplier prefers

some particular type of technology to implement their

software. There could be many different reasons for

such a preference, such as the need for adaptivity, low

price, high performance, etc. The reasons may vary,

but the situations can be compared: Instead of

selecting the most appropriate design solution, the

question is how the required safety and dependability

can be achieved with a given technology. Guidance is

needed on how to design safe and dependable

software systems with this technology, how to

demonstrate that it is fit for its purpose and safe to put

into use, and how to facilitate the assessment.

3.2 Software assurance

For software important to safety, important concerns

are how to assure that the software fulfils the

requirements, is safe to put into use, and otherwise is

fit for its purpose. Important issues related to software

assurance include how to ascertain the behaviour or

performance of software, to ensure that output items

of a specific development phase fulfil the

requirements and plans with respect to completeness,

correctness and consistency, to demonstrate that the

processes and their outputs are such that the software

fulfils its requirements and is fit for its intended

application, to ensure that the software performs as

required, preserving the software safety integrity and

dependability when modifying the software, and to

ensure that potential failures of tools do not

undetected adversely affect their output in a safety

related manner.

The different assurance activities often involve some

kind of analysis. They have in common the need to

ascertain the behavior or performance of the software

through detailed examination of its architecture and

components. An analysis of software important to

safety typically takes the form of careful examination

of the software or software component, and its

associated documentation, with the aim of reaching a

conclusion on its dependability and safety on basis of

its design. Of special importance is analysis

concerning the ability of the software to meet its safety

and dependability requirements in the event of

systematic failure. When the object of analysis also

involves hardware (i.e. an electronic system), the

analysis has to cover both random and systematic

failures. Obviously, analyzing the effects of

systematic faults is restricted by the limited

possibilities in actually identifying the systematic

faults, which indeed is some of the nature of these

faults. Of this reason, the analysis usually considers

the effects of failed software functions (typically at the

component level), without any differentiation between

the possible systematic faults.

A research problem related to failure analysis is how

to effectively address both product and process

aspects in the analysis, covering faults introduced in

the technical design as well as errors made in the life

cycle activities. Of particular concern are faults that

have a potential for common cause failures. There is a

need for recommendations on how the failure analysis

can be improved through optimal combinations of

description and analysis techniques reflecting all

Research on software systems dependability at the OECD Halden Reactor Project

 Nuclear Safety and Simulation, Vol. 2, Number 2, June 2011 129

relevant viewpoints. In particular, the analysis of

common cause failures needs to analyze not only the

software or the electronic system as a product, but also

the processes followed in its development. An

important source of errors with a potential for

common cause failures is the lack of sufficient

diversity in the early phases of the development: If the

error is introduced already in some common

specification, then a possible diversified design, with

diverse design teams, methods, languages and tools is

not necessarily enough to discover the potential for a

common cause failure.

An important aspect of the software assurance

activities is how they best can contribute to the

approval and acceptance of the software for its

intended use. Basic to the approval processes in many

countries and industries is the provision of a safety

case, i.e. the documented demonstration that the

product complies with the specified safety

requirements. The safety case forms part of the overall

documentary evidence to be submitted to the relevant

safety authority in order to obtain safety approval of a

product.

A research problem related to safety cases is how to

support the development and assessment of a safety

case and its supporting documentation for software

based systems, including the assessment of tool

automated processes, making optimal use of

probabilistic and analytical assessment methods. Such

a support can be secured in terms of methods and tools

designed to support the developer and the assessor in

respectively documenting and assessing the necessary

evidence, providing assistance for checking that

relevant questions have been covered, for checking

that the argumentation is complete, correct and

consistent, and for following up identified deviations

and defects in the safety argumentation and

documentation.

3.3 Software approval and deployment

In order for a safety critical system to be put into use,

the safety demonstration needs to be accepted by the

relevant safety authority through a formal approval

process. A successful deployment of the software

requires furthermore that the final software behaves as

expected when executed in the target system, and that

it continues to perform at the same level throughout its

life time. Important issues related to software approval

and deployment include how to ensure an effective

approval process and that the software preserves its

safety integrity and dependability when it is deployed

in the final environment of application and when

making corrections, enhancements or adaptations to

the software.

A research problem related to approval is what

characterizes effective approval processes. Successful

introduction of software important to safety requires

effective processes providing the necessary

documented evidence that the software is safe to put

into use. This puts great demands on all life cycle

phases, and needs to be reflected in the processes

employed for the development and approval of the

software.

The identification of the most important criteria

behind successful safety approvals can be approached

partly by surveying the approval processes in different

countries and industrial sectors. Such a survey will

probably show that these criteria affect both the

authorities’ approval activities and how the suppliers

can support these activities.

A related research problem is the role of safety

qualification tests as part of the approval and

acceptance of a software based system. In many cases,

the safety case prescribes a number of safety

qualification tests to be carried out under operational

conditions before the concerned system is given full

responsibility for safety. These tests do not replace the

safety argumentation in the safety case, but are

designed to provide increased confidence in the

system.

The problem on what is the proper use of safety

qualification tests can partly be approached by

surveying the role of such tests in concrete projects.

Such a survey will provide an important basis for

recommendations on how safety qualification tests

can be designed and carried out to support the

acceptance and deployment of software important to

safety. This includes recommendations on how to

provide the necessary documented demonstration of

the sufficiency of the tests.

SIVERTSEN Terje, and ØWRE Fridtjov

130 Nuclear Safety and Simulation, Vol. 2, Number 2, June 2011

4. Safety demonstration

Common to the approval processes for software based

systems important to safety is the need to demonstrate

that the system is fit for its intended purpose and safe

to put into use. A common approach in many countries

and industries is the presentation of safety

argumentation in terms of a documented safety case.

The essence of the safety case is the safety

argumentation it gives. The quality of this

argumentation is an important factor in achieving the

necessary approval and acceptance to put the system

into use. Compared to other types of documentation,

there is one aspect of quality that stands out as

particularly important, viz. the quality of the

argumentation as a logical, valid, comprehensible

argumentation. A good safety case needs not contain

much documentation, use many words, represent

“good literature” or use elegant language. The safety

case needs however to present the safety

argumentation in such a way that the independent

assessor and the relevant regulatory authority are

convinced that the system can be accepted as

adequately safe for the intended application.

As explained in this paper, several important research

problems within software systems dependability

relates to the need to give such an argumentation. The

need to provide a convincing argumentation gives

direction to the different activities throughout the

development of the software. This observation gives

valuable insight into the intimate relationship between

the life cycle activities on the one side, in particular

those involved in the development and assurance of

the software, and the provision of the satisfactory

safety demonstration on the other side. In practice,

such a demonstration requires that all the evidence

needed to carry out the necessary argumentation is

produced at the relevant steps in the development, i.e.

as part of the different development and assurance

activities.

The safety demonstration needs evidence both on the

quality and safety management employed in the

development of the system, and on the functional and

technical safety of the system. While evidence of

proper quality and safety management clearly

contributes to the confidence one can have in a system,

the actual demonstration that the system is adequately

safe for its intended application is first of all supported

by the evidence on the functional and technical safety

of the system. This consists of the technical evidence

for the safety of the design, comprising first of all the

demonstration of the appropriateness of the technical

principles adopted to assure the safety, and all

supporting evidence. Examples of supporting

evidence are the reported results from testing,

verification and validation. The requirements to the

planning, performance and reporting of the activities

producing this evidence are usually given in the

international or national standards adopted by the

supplier or required by the relevant safety authority.

The most critical issue regarding the safety case is its

ability to make a convincing argument that the risk

involved with putting the system into use has been

reduced to an acceptable level. This means that the

argumentation needs to be supported by documented

facts, first of all that all relevant safety requirements

have been established and are fulfilled by the system.

The supporting facts need to be documented in such a

way that they are auditable to a third party. Of

particular importance is the use of a configuration

management system that ensures traceability and

change control. This should be applied both to the

different documents and units produced in the project,

as well as to each single requirement to be

implemented. Both are essential for ensuring control

of development, review and change of the products

delivered. The evidence of such a control, and the

documentation supporting it, are essential to

successful assessment, approval and deployment for

all software important to safety.

5. Conclusions

Starting with a brief discussion on the concept of

software safety integrity and its relationship to

software systems dependability, this paper has

given an introduction to research problems

addressed by the OECD Halden Reactor Project

within this area, followed by a discussion on the

important role of safety demonstration in this

context. The paper has shown how a proper

understanding of safety integrity and safety

demonstration influences on the selection of

processes, methods, techniques and tools to be used

Research on software systems dependability at the OECD Halden Reactor Project

 Nuclear Safety and Simulation, Vol. 2, Number 2, June 2011 131

in the different life cycle phases of the software.

This perspective on software systems dependability

is also important for understanding the Halden

Project’s research programme within this area.

As has been emphasized in the paper, the need to

provide a convincing safety argumentation gives

direction to the different activities to be performed

throughout the development of the software. This

observation gives valuable insight into the intimate

relationship between the life cycle activities on the

one side, in particular those involved in the

development and assurance of the software, and the

provision of the satisfactory safety demonstration

on the other side. Such a demonstration requires

that all the evidence needed to carry out the

necessary argumentation is produced at the relevant

steps in the development, i.e. as part of the different

development and assurance activities. In this sense,

safety demonstration should be a matter of concern

throughout the whole software life cycle, and not

something to be postponed to a late stage where it

might be too late or too difficult to provide the

necessary argumentation and supporting evidence.

References
[1] International Electrotechnical Commission (IEC): IEC

61508 ed2.0, Functional safety of electrical/electronic/

programmable electronic safety-related systems, 2010.

[2] European Committee for Electrotechnical

Standardization (CENELEC): EN 50126, Railway

applications – The specification and demonstration of

Reliability, Availability, Maintainability and Safety

(RAMS), 1999.

[3] CENELEC: EN 50128, Railway applications –

Communication, signalling and processing systems –

Software for railway control and protection systems,

2001.

[4] CENELEC: EN 50129, Railway applications –

Communications, signalling and processing systems –

Safety related electronic systems for signalling, 2003.

[5] Radio Technical Committee on Aeronautics (RTCA):

DO-178B, Software Considerations in Airborne Systems

and Equipment Certification, 1992 (errata 1999).

[6] IEC: IEC 60880 ed2.0, Nuclear power plants –

Instrumentation and control systems important to safety

– Software aspects for computer-based systems

performing category A Functions, 2006.

[7] IEC: IEC 61226 ed3.0, Nuclear power plants –

Instrumentation and control important to safety –

Classification of instrumentation and control functions,

2009.

