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Abstract: In this paper, we attempt to evaluate the three-dimensional shape of a parallelepiped flaw and  
identify its location, i.e. the horizontal position and the located surface, by means of biaxial Magnetic 
Flux Leakage Testing (MFLT), employing a Neural Network (NN). The specimen is a magnetic material 
(SS400) subjected to a magnetic field, and the magnetic flux in the specimen leaks near the flaw. We 
measure the biaxial Magnetic Flux Leakage (MFL), i.e., the tangential and the normal components of the 
MFL, along a line parallel to the specimen's surface. We then approximate the measured biaxial MFL 
distributions by means of elementary functions with a small number of coefficients. The approximation 
coefficients are extracted as  Characteristic Quantities (CQs) of the MFL distribution. The horizontal 
position of the flaw along the measurement line is characterized by some of these CQs. NN is used to 
infer the cross section of the flaw, i.e., the width, depth, and located surface of the CQs. By repeating a 
similar process along several measurement lines parallel to the specimen's surface, we can identify the 
three-dimensional shape of the flaw, including its location. The NN, trained with several known flaws, 
was found to be able to evaluate the three-dimensional shape and location of a parallelepiped flaw with a 
high level of accuracy. 
Keyword: NDT; MFLT; neural network; flaw detection; magnetic sensor 
 

1 Introduction1

Magnetic Flux Leakage Testing (MFLT) is a 
commonly used Non-Destructive Testing (NDT) 
technique for the inspection of gas or oil pipe lines, 
and also holds promise for structures such as rail 
tracks, oil storage tank floors etc.[1,2]. If a flaw exists 
on the surface of a ferromagnetic material located in a 
magnetic field, then magnetic flux leaks from the 
material due to variation in the magnetic properties of 
the region around the flaw. MFLT evaluates the flaw 
by means of the correlation between the flaw shape 
and the measured distribution of  Magnetic Flux 
Leakage (MFL). However, the correlation is usually 
so complex that it is not easy for MFLT to evaluate the 
three-dimensional shape of a flaw quantitatively. The 
most important problem is signal analysis of the 
measured MFL [3,4]. In this paper, we use a Neural 
Network (NN) to obtain this correlation. NN is a 
recently developed data analysis tool for modeling 
complex relationships between inputs and outputs, 
which mathematically simulates the functioning of a 
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biological neural network [5]. 
 
In training the NN, the MFL distribution near the flaw 
is employed as the input, and the flaw shape as the 
output. In many cases, the three-dimensional flaw 
shapes have been calculated from planar MFL 
distributions [6,7]. However, this kind of method needs 
an extremely large training data set, for a large variety 
of flaw shapes. We therefore adopted a simple method 
in which a cross section of the flaw right below a 
measurement line is calculated from a 
one-dimensional MFL distribution on the line. The 
three-dimensional flaw shape can be evaluated by 
repeating the above procedure along several 
measurement lines. This method can significantly 
reduce the size of the data set needed for training a 
NN. 
 
On the other hand, it is valid to extract a certain 
number of Characteristic Quantities (CQs) from the 
MFL for improving the learning efficiency of the NN 
and the accuracy of flaw reconstruction. We are 
proposing Regression Analysis Method (RAM) as a 
new method for characterizing MFL distribution [8]. In 
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RAM, we approximate the original MFL distribution 
by means of elementary functions with a small 
number of coefficients. The approximation 
coefficients are calculated as the CQs of the MFL. 
Since the analytical MFL distribution for a 
two-dimensional flaw can be expressed in elementary 
functions based on the magnetic dipole model [9,10], 
the proposed RAM should characterize the measured 
MFL distribution with a high level of accuracy. It is 
therefore possible for RAM to effectively extract CQs 
from the MFL distribution by means of this simple 
procedure. 
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In this paper, we attempt to evaluate a parallelepiped 
flaw as a notch-type defect which may have been 
introduced at the time of manufacture, or while it was 
in service. We will first introduce the elementary 
functions for a rectangular flaw based on the magnetic 
dipole model. Next, we will measure the biaxial MFL 
distributions of parallelepiped flaws in SS400 
specimen, and calculate CQs by means of RAM. We 
will then construct an NN, for which the inputs are 
calculated CQs and the outputs are the known flaw 
shapes. Finally, we will evaluate the three-dimensional 
shapes of unknown parallelepiped flaws by means of 
the previously constructed NN. 
 
2 Distribution functions of MFL 
In RAM, which we proposed in the previous section, 
CQs are extracted from the MFL distribution by 
means of elementary distribution functions. In this 
section, we show how the elementary functions are 
derived from analytical expressions based on the 
magnetic dipole model for a rectangular flaw. 
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Fig.1 Rectangular flaw parameters 

2.1 Rectangular flaw 
The dipole model is a representative analytical 
expression of the MFL distribution which assumes 

that positive and negative magnetic charges are 
uniformly distributed on each side surface of the flaw, 
as shown in Figure 1. We assume that the rectangular 
flaw is located at the origin of the coordinate axes and 
extends infinitely along the y axis. Therefore, the 
tangential and normal components of the MFL, i.e. the 
two-dimensional distributions of BBx and BzB , without 
the external magnetic field, can be expressed in the 
following form [9,10]. 
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In these equations, d0 is the depth, w0 the width, and 
σ(A/m) is the surface magnetic density. If the flaw 
width w0 is sufficiently small, it can be shown that the 
above expressions may be approximated as 
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The above expressions are identical to the Forster’s 
MFL distribution functions for a finite slot [11]. Since 
the horizontal position of the flaw is unknown, and in 
a real world situation an external magnetic field would 
also be present, we should modify the above 
expressions. We are also interested in the MFL 
distribution at a particular height, specifically the 
vertical distance of the magnetic sensor from the 
specimen surface. As a result, the biaxial MFL 
distributions at a constant vertical distance are 
expressed in a one-dimensional form. 
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2.2 CQs extracted by RAM 
Through RAM, we approximate the MFL distributions 
by means of elementary functions using the least 
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square method, in which CQs are the coefficients 
contained in the functions. In Fig. 2, blank circles 
denote the measured biaxial MFL distribution for a 
front surface rectangular flaw. The solid lines in Fig. 2 
show the approximated MFL distributions of Eqs. (5) 
and (6). The lines are properly coincident with the 
measured data. In Eqs. (5) and (6), coefficients dx and 
dz indicate the horizontal position of the flaw. Ideally, 
dx and dz have the same value. Coefficients ex, ez and fz 
are the tangential and normal components of the bias 
magnetic flux far from the flaw. The above 
coefficients can be determined in the approximation 
process of the measured MFL distribution. Thus, in 
the following sections we employ the remaining six 
coefficients, i.e., ax, bx, cx, az, bz, cz, as CQs in order to 
evaluate the flaw shape quantitatively. These six 
coefficients are considered to be CQs closely 
correlated with flaw shapes. 
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(a) tangential component B
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(b) normal component BBz 

Fig.2 Approximation of biaxial MFL distributions 
of rectangular flaw 

 
Meanwhile, it is known that the MFL distribution 
profile of a back surface flaw is similar to that of a 
front surface flaw. So we can therefore extract the 
CQs from the MFL of a back surface flaw using 
Eqs.(5) and (6) in the same way we do for a front 
surface flaw. In Fig. 2, solid circles denote the 
measured biaxial MFL distribution for a back surface 
rectangular flaw. The solid lines in Fig. 2 show the 
approximated MFL distributions of Eqs. (5) and (6). 
We can see that the lines are properly coincident with 

the measured MFL data for both a back surface flaw 
as well as a front surface flaw. 
 

3 MFL measurement 
The specimen material is conventionally structural 
rolled steel SS400 whose magnetization curve is given 
in Fig. 3. Each specimen is 300mm length, 30mm 
width and 5mm thickness, and has three parallelepiped 
flaws at sufficiently intervals on one surface, as seen 
in Fig. 4. For the training of the NN we introduced 24 
flaws with width w and depth d, as indicated by solid 
circles in Fig. 5. We measure the biaxial MFL 
distributions on both the front and the back surfaces 
with respect to the magnetic sensor, so in total we 
obtained 48 sets of data that were used for training the 
NN. For evaluating the unknown flaws we prepared 6 
front and back surface flaws with width w and depth d, 
as indicated by blank circles in Fig. 5. 
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Fig.3 B-H curve of SS400 
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Fig.4 Specimen (SS400) 
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Fig.5 Widths and depths of prepared parallelepiped flaws 
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Fig.6 Experimental system 

 
Fig. 6 shows schematic diagram of the experimental 
system. The specimen was magnetized using a 
magnetizing yoke (HMA-1, Eishin Kagaku Co.), 
which has a magnetic core with a 25mm square cross 
section and the distance between each pole is 140mm. 
DC current of 0.3A we supplied to the magnetizer to 
induce 0.6T magnetic flux density in the cross section 
of the specimen, far from the flaw. The magnetic flux 
density was measured with an amorphous MI 
(Magnetic Impedance, MI-CB-1DW, AMI Co.) sensor 
with high spacial resolution, achieved through a 
0.45mm square sensing element. Throughout the 
experiment, we fixed the lift-off of the sensor at 
1.0mm. We measured the biaxial MFL with a pitch of 
1mm along a 40mm longitudinal line centered on the 
flaw. We then repeated the same procedure along 
parallel lines at 1mm intervals throughout the 20mm 
wide range that includes the flaw. Thus, we measured 
the biaxial MFL over a 40mm×20mm area, at lattice 
points spaced at 1mm intervals for each one of 54 
parallelepiped flaws. 
 
4 Training of neural network 
In training the NN to evaluate the shape of  
parallelepiped flaws, we used the 48 data sets obtained 
from the measurements described in the previous 
section. Each data set consists of 20 one-dimensional 
biaxial MFL distributions, meaning that we obtained a 
total of 960 one-dimensional biaxial MFL data points. 
These 960 data points include the data not only for the 
lines under which the flaw is present but also for those 
lines under which the flaw is not present. As we 
discussed in the previous section, we calculated all of 
the approximation coefficients seen in Eqs. (5) and (6) 
for the known flaws. 
 
To improve the accuracy of reconstruction, we created 
NNs individually specified for each output. First, we 
would construct the NN to determine whether or not a 
flaw is present under each measurement line. This NN 

sorts each measurement line into either the defective 
or non-defective category. We call this NN the 
classification-NN. In the classification-NN, the inputs 
are the six CQs ax, bx, cx, az, bz, cz and the outputs are 
symbols d and nd which represent whether or not a 
flaw exists, as seen in Fig. 7. Henceforth the symbols 
d and nd will denote defective and non-defective, 
respectively. In this paper, we use the NN software, 
Neural Works Predict, from Neural Ware. 
 

d (defective) or 
nd (non-defective)

Input Output

Characteristic quantities
(ax,bx,cx,az,bz,cz)  

Fig.7 Structure of classification-NN 

 
Next, we create an NN to judge the location of the 
flaw. We call this NN the localization-NN. For the 
training of this NN, we use only the data for 
“defective” lines, or those under which a flaw is 
present. In the localization-NN, the inputs are the 
above six CQs, and the outputs are the symbols f and 
b, which represent the located surface, as seen in Fig. 
8. Henceforth, the symbols f and b will denote the 
front and back surfaces, respectively. 
 

f (front surface) or 
b (back surface)

Input Output

Characteristic quantities
(ax,bx,cx,az,bz,cz)  

Fig.8 Structure of localization-NN 

 
Finally, we construct a NN to identify the cross 
section of a flaw, i.e. the width and the depth. We call 
this NN the identification-NN. In training this NN, we 
use only the data for “defective” lines, as in the 
localization-NN. For the identification-NN, the inputs 
are the above six CQs and the outputs are the width 
and the depth of the flaw, as seen in Fig. 9. 
 

Flaw width w

Input Output

Characteristic quantities
(ax,bx,cx,az,bz,cz)

Flaw depth dCharacteristic quantities
(ax,bx,cx,az,bz,cz)  

Fig.9 Structure of identification-NN 
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After training the NNs for each of the 48 data sets, we 
again estimate the known 48 flaws using the trained 
NNs. Table 1 shows the errors in this estimation. 
Fig.10 shows the estimated width and depth of each 
flaw. It is apparent that the estimation accuracy of 
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flaw depth is higher than that of flaw width. This may 
be due to the fact that the interval of the depth in the 

prepared flaws was smaller than that of the width. 
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(a) flaw width       (b) flaw depth 

Fig.10 Evaluation of flaws used for training NN 

Table 1 Errors in evaluation of front surface flaw with 0.25mm width and 1mm depth 

 Average error Maximum error 
Defective or non-defective 85.7% accuracy 

Located surface 100% accuracy 
Width 0.98mm 2.48mm 
Depth 0.35mm 0.44mm 

 

5 Evaluation of unknown flaw 
For the evaluation of unknown parallelepiped flaws by 
means of the NNs trained as discussed above, we used 
the data for the 6 front and back surface flaws that we 
had measured as described in section 3. 
 
We evaluated the flaws in three steps. In the first step, 
we used the classification-NN to estimate whether or 
not the data for each measurement line is defective. In 
the second step, we evaluated the located surface with 
respect to the “defective” data, that is, those data 
points which had been classified as defective in the 
first step. For this evaluation, we used the 
localization-NN. In the final step, we used the 
identification-NN to measure the depth and width of 
the cross section of the flaw. In this step, we evaluated 
only the “defective” data, as in the second step. We 
also assumed the horizontal position of the flaw on 
each measurement line to be the average value of the 
dx and dz, which is obtained at the point of extraction 
of CQs by means of RAM. 
 
In Figs. 11-16, figures (a) show the flaw shapes, 
figures (b) show the evaluated flaw shapes, (c) and (d) 
show the tangential and the normal components of the 
measured biaxial MFL distributions. In figures (a) and 

(b), the graduated value denotes the depth (mm), 
where the negative and positive values represent the 
front surface and the back surface flaws, respectively. 
The specimen surface is assigned a value of zero. In 
figures (c) and (d), the graduated value denotes the 
magnetic flux density (G) in each direction. Tables 2-7 
show the averaged error and the maximum error with 
respect to the 15 measurement lines which cover the 
opening area of each flaw. Here the error means the 
difference from the true value. 
 
The accuracy of distinguishing between the defective 
lines and the non-defective lines by the 
classification-NN is between 80~95%. The accuracy 
of estimation of the located surface by the 
localization-NN is over 93%. These results show it is 
not likely that the flaw is overlooked or the located 
surface is wrongly estimated in actual inspection if the 
flaw passes over several measurement lines. On the 
other hand, the averaged errors in evaluations of the 
width and the depth are around 0.1 ~ 1mm. The range 
of above errors is in a similar order to the sensing 
element size or the scanning intervals. And it can be 
seen that the maximum error in evaluation of the 
width tends to be larger as the width become smaller. 
The averaged error and the maximum error in 
evaluations of the depth are around 0.3mm and 0.6mm, 
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respectively. Since the most important parameter for 
the materials diagnostics is the flaw depth, it can be 
said the above evaluation accuracy is enough good for 
practical use in material inspection. 
 
6 Conclusion 
In this paper, we attempted to evaluate the 
three-dimensional shape of a parallelepiped flaw in 
SS400, including its horizontal position and located 
surface by means of biaxial Magnetic Flux Leakage 
Testing (MFLT), using a Neural Network (NN).  
 

(1) We adopted a simple method for evaluating 
the three-dimensional shape of a 
parallelepiped flaw, in which the 
three-dimensional flaw shape is obtained by 
integrating cross sectional evaluations of 
several measurement lines. 

(2) We proposed a new method for extracting the 

Characteristic Quantities (CQs) from biaxial 
MFL distribution, which we call the 
Regression Analysis Method (RAM). We 
employ NN in an inverse analysis method to 
obtain the correlation between the above CQs 
and the flaw shape. 

(3) We found that using biaxial MFLT with a NN, 
using the CQs extracted by RAM, can evaluate 
the three-dimensional shape and the location 
of the parallelepiped flaw with a high level of 
accuracy. 

 
However, this proposed method can be applied only to 
a parallelepiped flaw. From a practical standpoint, 
further work is required to modify the MFL 
distribution functions used in RAM to represent the 
MFL of more arbitrarily shaped flaws. 
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(a) flaw shape     (b) evaluated flaw shape 

 
(c) tangential component BBx    (d) normal component Bz B

 
Fig.11 Evaluation of front surface flaw with 0.25mm width and 1mm depth 

 

Table 2 Errors in evaluation of front surface flaw with 0.25mm width and 1mm depth 

 Average error Maximum error 
Defective or non-defective 85.7% accuracy 

Located surface 100% accuracy 
Width 0.98mm 2.48mm 
Depth 0.35mm 0.44mm 
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(a) flaw shape     (b) evaluated flaw shape 

 
(c) tangential component BBx    (d) normal component Bz B

 
Fig.13 Evaluation of front surface flaw with 2mm width and 2mm depth 

 

Table 4 Errors in evaluation of front surface flaw with 2mm width and 2mm depth 

 Average error Maximum error 
Defective or non-defective 95.2% accuracy 

Located surface 100% accuracy 
Width 0.58mm 1.99mm 
Depth 0.23mm 0.64mm 

 
(a) flaw shape     (b) evaluated flaw shape 

 
(c) tangential component BBx    (d) normal component Bz B

 
Fig.12 Evaluation of back surface flaw with 0.25mm width and 1mm depth 

 

Table 3 Errors in evaluation of back surface flaw with 0.25mm width and 1mm depth 

 Average error Maximum error 
Defective or non-defective 90.5% accuracy 

Located surface 100% accuracy 
Width 0.89mm 3.67mm 
Depth 0.26mm 0.38mm 
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(a) flaw shape     (b) evaluated flaw shape 

 
(c) tangential component BBx    (d) normal component Bz B

 
Fig.14 Evaluation of back surface flaw with 2mm width and 2mm depth 

 

Table 5 Errors in evaluation of back surface flaw with 2mm width and 2mm depth 

 Average error Maximum error 
Defective or non-defective 81.0% accuracy 

Located surface 100% accuracy 
Width 0.63mm 2.06mm 
Depth 0.15mm 0.31mm 

 

 

 
(a) flaw shape     (b) evaluated flaw shape 

 
(c) tangential component BBx    (d) normal component Bz B

 
Fig.15 Evaluation of front surface flaw with 4mm width and 3mm depth 

 

Table 6 Errors in evaluation of front surface flaw with 4mm width and 3mm depth 

 Average error Maximum error 
Defective or non-defective 85.7% accuracy 

Located surface 93.3% accuracy 
Width 0.05mm 0.08mm 
Depth 0.21mm 0.49mm 
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(a) flaw shape     (b) evaluated flaw shape 

 
(c) tangential component BBx    (d) normal component Bz B

 
Fig.16 Evaluation of back surface flaw with 4mm width and 3mm depth 

 

Table 7 Errors in evaluation of back surface flaw with 4mm width and 3mm depth 

 Average error Maximum error 
Defective or non-defective 95.2% accuracy 

Located surface 100% accuracy 
Width 0.08mm 0.10mm 
Depth 0.30mm 0.46mm 
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