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Abstract: The deployment of next generation nuclear power plants will include small modular reactors (SMR) 
that range in electricity production from 50 MWe to 200 MWe. A key to economic and sustained operation of 
these systems would be the ability to monitor components and devices on-line, and to incorporate autonomous 
control of these systems. The development of control strategies for multiple-module systems and the allocation 
of sensors to optimize fault detection and diagnosis are presented with application to a nuclear desalination 
system using integral SMRs as the heat source. The design performance is evaluated using 
MATLAB-SIMULINK based reactor dynamic models.  
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1 Introduction1 
The nuclear power industry is undergoing a rapid 

growth in the deployment of light water reactors and 

gas-cooled reactors, ranging in electricity production 

from 50 MWe to 1500 MWe. The research, 

development, and demonstration work presented in 

this paper is focused on small modular reactors (SMR) 
[1]. These range in power output from 50 MWe to 200 

MWe. The reactor design of interest is the integral 

pressurized water reactor, with possibly multiple 

modules that operate in parallel and feed steam to a 

single turbine. Such a configuration requires mixing 

steam from two or more modules in a steam header, 

with steam from all the units maintained at the same 

conditions. The efficient operation of this 

configuration requires advanced control strategy and 

sensor allocation for optimal anomaly tracking and 

fault isolation. The thermal output is also partitioned 

to provide process heat to systems such as desalination 

plants and district heating. 

 

The research work at the University of Tennessee is to 

develop control strategies for reactor operation at 

different power levels, load following capability for 

the partitioning of process heat, and the design of 

sensor placement for effective fault monitoring and 

diagnosis. Both classical control methods and 

model-predictive controllers were developed for 
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single unit operation. The optimal sensor placement 

approach uses the criterion for fault detectability and 

fault isolation, with a constraint on the total resources 

available. A digraph-based approach for relating the 

measurements, using a physical model of the 

sub-system under consideration, is used for 

developing a criterion function. 

 

These control and sensor optimization methods are 

applied to a 350 MWe integral pressurized water 

reactor, the International Reactor Innovative and 

Secure (IRIS), developed by Westinghouse 

Technology Center [2]. The results demonstrate the 

automated design features of control and 

instrumentation strategies, which can also be 

implemented for other SMRs. 

 

The control strategy for steam mixing and load 

following operation with a dual-module reactor plant 

are described in section 2. The theory and algorithms 

for optimal sensor allocation and fault diagnosis are 

outlined in section 3. Concluding remarks are 

presented in section 4. 

 

2 Multi-modular reactor concept and 
control strategy 

2.1 General concept of a multi-modular plant 

A multi-modular reactor system consists of two or 

more nuclear power units that operate in parallel, 

with the steam from different units flowing into a 
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common header. Such power generating stations have 

the advantages of providing continuous power supply 

even when one of the units is down for maintenance, 

and load following features with the modules 

operating at different power levels. In this study a 

1000-MWth Pressurized Water Reactor (PWR) is 

considered. This Westinghouse PWR is referred to as 

the IRIS and supplies about 350 MWe power. 

 

The primary and secondary (steam) loops in the IRIS 

system are incorporated in a large reactor vessel, with 

the upper head acting as the pressurizer to maintain 

constant primary pressure. There are eight helical coil 

steam generators (HCSG) surrounding the reactor 

core and the riser. The feedwater flow to a pair of 

HCSGs has a common feed line. The primary water 

is pumped in a downward direction surrounding the 

helical tubes. The HCSG is a once-through steam 

generator producing superheated steam. The reactor 

control requirements specify constant average coolant 

temperature across the core and a constant steam 

pressure. In this work these two control actions are 

included, thus requiring a multivariate control 

approach. 

 

The study by Kim and Bernard [3] in the early 1990s 

focused on the simulation of a U-tube steam 

generator type multi-modular saturated steam PWR 

reactor plant capable of operating under normal 

operational transients with unbalanced loads, and 

proposed and evaluated a robust, digital closed-loop 

steam generator level controller for both existing and 

multi-modular power plants. In Fig. 1, such a 

proposed twin-module IRIS plant is shown, with the 

water exiting the reactor core and flowing down 

through the shell-side of the respective steam 

generator, and the super heated steam in the tubing 

flowing to a common steam header and to the steam 

turbine. 

 

In a U-tube steam generator system, the saturated 

steam PWR is operated as a constant 

pressure-constant flow device with programmed core 

coolant average temperature that increases with 

increasing load, with reactor control being 

maintained by a combination of mechanical control 

rods responding automatically to load changes, and 

the soluble neutron poison, boric acid (H3BO3), 

responding to fuel burn-up changes [4]. 

 

Fig. 1 Configuration of a dual-module nuclear power system 

with a common steam header. 

 
2.2 IRIS multi-modular control strategy 

The multi-modular reactor systems have the 

advantages of providing continuous power supply 

even when one of the units is down for maintenance, 

and load following features with the modules 

operating at different power levels. This two-unit 

model is based on the single model and has the same 

constants, initial conditions, etc, but there are a few 

differences between the two versions, most notably a 

second Tave controller and a steam pressure controller. 

Steam from both the units is superheated and any 

pressure loss between the steam generator exit and the 

pressure header is neglected. Also, an additional 

demand input was added to the model to 

independently set the power in the second unit. But the 

most important changes are in some of the 

assumptions, specifically concerning the calculation 

of the temperature of the mixed steam. The 

assumptions are listed below for completeness: 

 Unlike in PWRs with recirculation-type steam 

generators, where there is a sliding Tave controller, 
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the average of core inlet and outlet temperatures 

in IRIS remains constant, with a set point value 

of 310°C (590°F) over the entire simulation. 

 The pressure of the steam from the helical coil 

steam generators (HCSG) remains constant at 5.8 

MPa (~841 psi) for the entire range of reactor 

operation. 

 Feed water temperature is fixed at 223.9°C 

(435°F), corresponding to 100% power for entire 

simulations. 

 There is no feed-forward controller to quickly 

move control rods based on changes in power 

load demands. 

 Pressurizer and balance-of-plant models are not 

included in the simulation. These parameters are 

assumed to be at fixed values. 

 Steam generator feed water flow rate is set by a 

power demand – feed flow program based on a 

FORTRAN code developed by North Carolina 

State University (NCSU) [11]. 

 Steam mixture temperature at the steam header is 

calculated assuming constant pressure (see bullet 

above), balance of mass and steam properties, 

and is calculated as: 

 

1 1 2 2
T

( ) ( )
h ( )

T

h t m h t m
t
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         (1) 

1 2Tm m m             (2) 

Where: 

Th ( )t  is the temperature-dependent total enthalpy. 

1( )h t  and 2 ( )h t  are unit #1 and unit #2 

temperature-dependent enthalpies, respectively. 

Tm , 1m , 2m  are total, unit #1 and unit #2 mass flow 

rates, respectively. More details are given in Ref [11]. 

 

The values of Th ( )t  obtained from the combined 

steam temperatures are then used to determine the 

temperature of the mixed steam at the corresponding 

superheated steam pressure of 5.8 MPa (841 PSI) 

using a look-up table embedded in the Simulink model, 

assuming steam outlet pressure deviations can be 

neglected. 

 
2.3 Multi-modular IRIS plant used in load 

following maneuvers 

As stated earlier, load following is the capability of a 

reactor to follow changes in the grid demand; for 

example, reduced consumption over the weekend or 

load changes during the day. Hence, it is desirable 

from an economical point of view that a 

multi-modular reactor plant also be able to do just that, 

although there are currently no regulations in this 

regard. For this purpose, the two-unit model with 

steam mixing is subjected to transients similar to the 

power demand profile, shown in Fig. 2. However, only 

the first 30 out of the 60 hours of such profile were 

simulated for three main reasons: running the whole 

profile is not necessary (thus avoiding repetition), it is 

time consuming and possible numerical stability 

issues. 

 

The results shown are for the two-unit model using 

profile 1 (Fig. 2) load demand for module #1 and 

profile 2 (Fig. 3) load demand for module #2. The 

programmed feed water flow rate to module #2 is 

shown in Fig. 4. Note that the feed flow rate to module 

#1 is constant. The steam flow rate follows the feed 

water flow rate profile. The feed water flow rates in 

the two modules follow the power demand and 

eventually match the steam flow rate in the two 

modules.  Figures 5 and 6 show the changes in the 

average primary coolant temperature (Tave) in modules 

#1 and #2 around their respective set points. In Figs. 5 

and 6 Tave varies by about 2°C and follows the load 

demand as the controller changes the external 

reactivity. Hence, the core inlet and outlet 

temperatures adjust to maintain a constant average 

coolant temperature around the set point. The changes 

in the steam temperature at each of the reactor 

modules and the temperature of the mixed steam in the 

common header are shown in Fig. 7. The two power 

levels have different steady state profiles and the 

steam temperature does not match during these 

transients.  The figure shows the temperature of the 

steam in the steam header where the two streams mix 

and supply the steam to the turbine.  As the power in 

either of the modules decreases, the area available for 

heat transfer in the steam generator increases, 

therefore increasing steam temperature; conversely, 

the steam temperature decreases following a power 

increase. The control strategy of regulating the 

average reactor temperature and the steam pressure is 

robust for this load following operation. The 

controllers are capable of maintaining both average 

moderator temperature and steam outlet pressure 

around their set points in both the modules. 
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Fig. 2 Reactor module #1 power profile in percent full power. 

 

Fig. 3 Reactor module #2 power profile in percent full power. 
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Fig. 4 Feed water flow rates to modules #1 and #2. 
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Fig. 5 Reactor module #1 average moderator temperature. 
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Fig. 6 Reactor module #2 average moderator temperature. 
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Fig. 7 Units #1, #2, and mixed steam header temperatures. 

Ref [11] provides further details of this analysis. 

 
2.4 Model robustness 

Four different perturbation cases were investigated to 

analyze the model’s capability of detecting small 

perturbations, thus testing its robustness and 

sensitivity [11]. 
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Case 1: 

 2.8°C (5°F) step perturbation in Tcold temperature 

measurements in module #1 at t=6h, with both 

modules operating in steady state at 100% power. 
Case 2: 

 1.7°C (3°F) step perturbation in Tcold temperature 

measurements in module #1 at t=6h, with both 

modules operating in steady state at 100% power. 

Case 3: 

 1% Full Scale (FS) random perturbation in feed 

water flow rate at t=6h for 5 minutes in both 

modules. Module #1 operating at 90% and 

module #2 at 95%. 

Case 4: 

 1% FS perturbation in feed water flow rate in 

module #1 at t=6h. Module #1 operating at 95% 

and Module #2 at 100%. 

 

Cases 1 and 2 involve sensor perturbations, in which 

the source of perturbation is not in the process itself 

but in the sensor measurements, but is propagated 

throughout the system. On the other hand, cases 3 and 

4 involve process perturbations due to hypothetical 

equipment malfunctions, and such perturbations do 

propagate throughout the process. Figure 8 shows the 

variations in the steam temperatures for the case of a 

1% FS perturbation of feed water flow in module #1.  

The response of the steam generator dynamics 

indicates a robust behavior of module #1 steam 

temperature and the steam header temperature.  The 

bias created in the steam header temperature is less 

than 0.3°C. 
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Fig. 8 Steam header temperature variation for a negative 1% 

feed water flow rate in module #1 

 

 

3 Optimum sensor placement 
algorithms and applications 

3.1 Introduction 

Sensor placement design is a critical component of a 

fault diagnostic system. Whenever a process 

encounters a fault, the effect of the fault is propagated 

to some or all of the process variables. The main 

objective of the fault diagnosis is to observe these fault 

symptoms and determine the root cause of the 

observed behavior. The ability of the sensor network 

to detect and discriminate failure modes and 

anomalous conditions is crucial for the efficiency of 

the fault diagnostic system. With hundreds of process 

variables available for measurement in a nuclear 

power system, the selection of optimum sensor 

locations poses a unique problem. 

 

The objective of this research is to design an efficient 

sensor placement strategy that will help in the quick 

and accurate identification of faults. The solution to 

the problem of sensor placement may be broadly 

divided into two tasks: (1) fault modeling or 

prediction of cause-effect behavior of the system, 

generating a set of variables that are affected 

whenever a fault occurs, and (2) use of the generated 

sets to identify sensor locations based on various 

design criteria. In general, given a process with its 

faults and measurable variables (where sensors may 

be placed), the cause-effect information is represented 

in a fault-sensor maximum connectivity matrix. This 

bipartite matrix serves as the basis for the generation 

of the fault sets. 

 

The fault propagation or cause-effect behavior can be 

derived on the basis of the qualitative model that is 

used to represent the process. The directed graph (DG) 

is such a qualitative model that can be used to infer the 

cause-effect behavior in a system. It normally consists 

of a set of nodes and directed branches. The nodes 

represent process variables and the branches represent 

the causal influences between the nodes. Analysis of 

cause-effect behavior is straightforward in a DG 

representation as the occurrence of a fault in a DG 

causes the variables associated with that fault to 

acquire abnormal states. 
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3.2 Fault observability and resolution criteria 

Fault observability refers to the condition that every 

fault defined for the process has to be observed by at 

least one sensor. Given a process DG, the observability 

problem becomes one of finding the minimum number 

of sensors that would cover all the faults (root nodes). 

This is commonly known as “minimum set covering 

problem” [5], where the sets to be covered are the sets 

of sensors affected by each fault. Resolution refers to 

the ability to identify the exact fault that has occurred. 

The maximum resolution that can be attained is 

restricted by the topology of the DG and the position 

of the fault or root nodes in the DG. Hence, given the 

constraints on measurement points, the problem of 

resolution is that of generating sensor locations so that 

every fault is resolved to the maximum extent possible. 

This condition is referred to as the “highest fault 

resolution”. Also, the assumption of single-fault or 

multiple-fault would lead to different resolutions. For 

multiple-fault resolution, new “virtual fault” sets 

which are used to distinguish among faults are formed, 

in addition to the original sets of nodes affected by 

each fault. Thus, the resolution problem reduces to 

finding a cover for these new sets, as well as the 

original sets. For instance, let iA  denote the set of 

nodes connected to the thi  fault among a set of fault 

nodes. The causal set should also include a set of 

virtual faults ij i j i jB A A A A     for all i  and j , 

each of which denotes a pair of fault nodes i  and j  

to be distinguished. 

 

The fault observability and resolution problems could 

be solved exactly by enumeration, but with an 

increasing number of root nodes and sensor locations, 

it may not be computationally feasible to solve the 

problem in that fashion. In many instances, one may 

only be interested in a “good enough” solution rather 

than an exact solution. In these cases, heuristics often 

give a quick and reasonably accurate solution. A 

greedy search heuristic has been developed for solving 

the single and multiple fault observability and 

resolution problem. More details concerning greedy 

search heuristics may be found in references [6] [7]. 

 

In many cases, it is found that some faults are still 

indistinguishable using the sensor set obtained from 

the above sensor placement scheme. Nonetheless, 

optimal sensor placement design from a fault 

diagnosis perspective will provide valuable 

information to the principal component analysis 

(PCA)-based fault detection and isolation (FDI) 

system, as later revealed in the case studies. The 

overall method as described in the preceding sections 

thus consists of the following steps: 

 

(a) Define all the faults of interest in the process 

(including process fault and sensor fault) based on the 

operation history records and available process 

knowledge; then build DG models of the monitored 

process, which can be implemented by using empirical 

relationships or fundamental mathematical model of 

the process. 

 

(b) Solve the fault observability and resolution 

problems to decide the allocation of sensors. The 

obtained sensor set would partially guarantee the 

detection and isolation of all the faults defined in the 

first step. 

 

(c) Highlight the faults that cannot be isolated by the 

information provided by the DG model and the sensor 

network obtained in steps (a) and (b). These faults will 

be left to the PCA fault diagnostic system for further 

detection and isolation. 

 
3.3 Principal component analysis (PCA) 

PCA is a statistical algorithm of dimension reduction 

by projecting data on to a lower dimensional space 

such that the major variation of the original data can 

be preserved. Given a normalized process data matrix 

X  ( m n ) composed of m observations with n 

measured variables. PCA decomposes X  into two 

components, a predicted value �X  and an error value 

E , which determine two orthogonal subspaces, i.e., 

the principal component (PC) subspace and the 

residual component (RC) subspace, respectively. 

 
�

� T

T
E E

X X E

X TP

E T P

 





                    (3) 

 

where P is the orthogonal loading matrix and T is the 

score matrix. The scores T in the PC subspace 

explain the dominant variation of the measured 

variables, and the scores ET  in the RC subspace 

represents the insignificant variation due to model 

reduction error. The column vectors of principal 

component loadings P ( n l ) are the eigenvectors 
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corresponding to the l  largest eigenvalues of the 

correlation matrix of the data matrix X  and the 

columns of EP  are the eigenvectors corresponding 

to the smallest n l  eigenvalues. 

 

Building a model to characterize the relationships 

among the various measurements is an essential part 

of the FDI methodology. Patterns of the residuals that 

signify the mismatch between the model and the 

actual data most likely correspond to faults of a 

particular type. Specifically, different faults would 

cause the corresponding residuals to orient toward 

different directions. These various prediction error 

directions are referred to as the fault directions, and 

the particular fault may be isolated as the one with 

maximum projection on the enumerated set of fault 

directions. The proposed fault isolation scheme is 

described as follows [8]. 

 

Let  1 2 3  ... RF f f f f , where 1 2 3  ... Rf f f f  are column 

vectors and denote the fault directions for the various 

fault scenarios that are observed in an existing 

database. These fault directions can be extracted from 

the historical data using clustering techniques. The 

fault direction if  in the fault matrix F  represents 

the direction in the residual space for the thi  fault 

such that the samples corresponding to the fault have 

the maximum projection on if . In other words, if iE  

denotes the residuals for samples corresponding to the 

thi  fault, the optimization problem is defined as 

 

max
i

T T
i i i i

f
J f E E f                 (4) 

 

subject to the constraint 

 

1T
i if f                       (5) 

 

Using the Lagranian multiplier and differentiating J 

with respect to if  and setting the derivative to zero 

for maximization, we get 

 
T
i i i iE E f f                   (6) 

 

The fault direction if  is thus obtained as the first 

eigenvector of T
i iE E . The singular value 

decomposition (SVD) may be used to obtain the 

eigenvector. 

 

Once the fault matrix F  is properly defined, fault 

isolation is accomplished by calculating the 

projections onto F  and classifying the fault as the 

one with the maximum projection norm. A fault 

isolation index for the thi  fault is defined as 

 

1 /i iFI Q Q                  (7) 

 

where 

( )( )T T T
i i i i iQ e I f f I f f e         (8) 

 

In the above equations, iQ  is the distance of the 

sample from the origin after subtracting the projection 

of the residuals on the fault direction if . It represents 

the sum of squares of residuals remaining after 

removing the contribution from the thi  fault direction. 

The fault isolation index quantifies the fraction of Q  

that is due to if . When the thj fault occurs, the 

projection of the residuals on jf  would be very high. 

In other words, iFI  would be the largest and nearly 1 

for i=j, where i varies from 1 to R. This results in the 

isolation of the faults from the various existing 

scenarios. 

 
3.4 Application to multi-stage flash desalination 

systems 

Among a variety of desalination technologies, 

multi-stage flash (MSF) contributes substantially to 

the desalinating capacity in the world. Market share of 

the MSF processes accounts for 70% of all seawater 

desalination processes [9]. The MSF process usually 

includes a number of flashing stages connected to a 

brine heater. Figure 9 illustrates the flow diagram of a 

simplified MSF system with two flash stages and a 

brine heater 10. Seawater feed passes through tubes in 

each flashing stage where it is progressively heated. 

Final seawater heating occurs in the brine heater by 

the heat source. Subsequently, the heated brine flows 

through nozzles into the first stage, which is 

maintained at a pressure slightly lower than the 

saturation pressure of the incoming water. As a result, 

a small fraction of the brine flashes, forming pure 

steam. 

 

The heat needed to flash the vapor comes from cooling 

of the remaining brine flow, which lowers the brine 

temperature. Subsequently, the produced vapor passes 

through a mesh demister in the upper chamber of the 
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flashing stage where it condenses on the outside of the 

condensing brine tubes and is collected in a distillate 

tray. The heat transferred by the condensation warms 

the incoming seawater feed as it passes through that 

stage. The remaining brine passes successively 

through all the stages at progressively lower pressures, 

where the process is repeated. The hot distillate flows 

as well from stage to stage and cools itself by flashing 

a portion into steam which is re-condensed on the 

outside of the tube bundles. 

 

 
Fig. 9. Schematic diagram of an industrial MSF design [10]. 

 

The DG model of the simplified MSF system [12] is 

shown in Fig. 10. The yellow F nodes represent the 

root nodes of the system, each of which corresponds to 

a fault. The 27 measurements that are available are 

listed in Table 1. Table 2 lists eight fault cases that 

need to be monitored. The fault diagnosis of the 

simplified MSF system takes into account the sensor 

faults, process faults, and controller faults. The four 

sensor faults are all sensor drifts; the heat transfer 

degradation faults of flash stages #1 and #2 are 

considered to be process anomalies in the MSF system. 

Changes in the set points of the top brine temperature 

(TBT) controller and the brine level controller of stage 

#2 are identified as the two controller faults for the 

desalination process. As can be seen, the digraph has 

clearly illustrated the cause-effect relationships among 

the involved variables and the propagation pathways 

from the fault nodes to other nodes. 
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Fig. 10 Directed graph of a two-stage MSF system [12]. 

 

Table 1 Two-stage MSF system variables 

Index Description 
S1 Inlet cooling brine temperature 
S2 Inlet cooling brine flow 
S3 Inlet cooling brine salinity 
S4 Inlet steam temperature 
S5 Inlet steam flow rate 
S6 Distillate product temperature exiting stage #1
S7 Distillate product temperature exiting stage #2
S8 Flashing brine temperature exiting stage #1 
S9 Flashing brine temperature exiting stage #2 
S10 Cooling brine temperature exiting stage #1 
S11 Cooling brine temperature exiting stage #2 
S12 Flashing brine flow exiting stage #1 
S13 Flashing brine flow exiting stage #2 
S14 Flashing brine salinity exiting stage #1 
S15 Flashing brine salinity exiting stage #2 
S16 Top brine temperature 
S17 Top brine temperature controller set point 
S18 Distillate product flow exiting stage #1 
S19 Distillate product flow exiting stage #2 
S20 Stage #1 pressure 
S21 Stage #2 pressure 
S22 Brine level in stage #1 
S23 Brine level in stage #2 
S24 Stage #2 brine level controller set point 
S25 Cooling brine flow exiting the brine heater 
S26 Cooling brine flow exiting stage #1 
S27 Cooling brine flow exiting stage #2 

 

Table 2 Faults considered for two-stage MSF system 

Fault Nodes System Faults 
F1 Inlet cooling brine temperature sensor drift 
F2 Inlet cooling brine flow sensor drift 
F3 Inlet cooling brine salinity sensor drift 
F4 Flashing stage #1 heat transfer degradation 
F5 Flashing stage #2 heat transfer degradation 
F6 Top brine temperature sensor drift 
F7 Top brine temperature controller fault 
F8 Stage #2 brine level controller fault 
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3.5 Results of sensor placement and fault diagnosis 

The greedy search heuristic is used to find the 

minimum set of sensors required to observe all the 

eight faults listed in Table 2 for the two-stage MSF 

system. It gives nodes 9 15 16 23[ , , , ]S S S S  as the sensor 

set. Although all the faults can be detected, not every 

fault can be distinguished from one another. 

 

To obtain the set of sensors that would give maximum 

resolution under single-fault assumption, additional 

“virtual faults” have to be created as discussed earlier. 

Sets A are associated with the original faults. The 

virtual faults ij i j i jB A A A A    are also 

constructed. This involves generation of 2
8 28C   

virtual faults, so that the system now has 36 faults. 

Now each ijB  is represented as a fault node, and a 

bipartite graph is constructed between these nodes and 

the sensor nodes. The greedy search based heuristic 

presented for fault diagnostic observability criterion is 

applied to the new problem. This gives 

1 2 3 8 9 10 11 12 15 16 17 23 24[ , , , , , , , , , , , , ]S S S S S S S S S S S S S  as the 

minimum sensor set for complete isolation of the 

selected faults. The advantage of using this optimized 

sensor set is that more information about the system is 

utilized, and some basic properties such as the fault 

detectability and identifiability are already partially 

guaranteed before PCA is employed to monitor system 

behavior. 

 

A normal operation database was generated using a 

two-stage MSF SIMULINK model. The TBT 

controller set point and the brine level controller set 

point in the last flashing stage (Stage #2) were 

systematically changed one at a time. About 1,728 

cases were simulated and the data generated were 

stored in a database. The list of the measured variables 

used to develop the PCA model is given in Table 3. 

 

A PCA model is built using the data for the nominal 

operation case. The nominal operation data matrix is 

preprocessed by auto-scaling the columns in the data 

matrix to zero mean and unit variance. This puts all the 

measurements with their different units on a common 

unit variance scale. Under normal conditions, small 

residuals would be generated and limited to a certain 

range. In the test cases when one or several 

components in the system are under degradation, the 

so-called causal relations among these variables will 

be violated. As a result, the mapping of residuals from 

residual generators or system models will increase in a 

specific direction. 

 

Table 3 MSF variables used to develop PCA models 

Variable Description 
1 Inlet cooling brine temperature (S1) 
2 Inlet cooling brine flow (S2) 
3 Inlet cooling brine salinity (S3) 
4 Flashing brine temperature exiting stage #1 (S8)
5 Flashing brine temperature exiting stage #2 (S9)
6 Cooling brine temperature exiting stage #1 (S10)
7 Cooling brine temperature exiting stage #2 (S11)
8 Flashing brine flow exiting stage #1 (S12) 
9 Flashing brine salinity exiting stage #2 (S15) 

10 Top brine temperature (S16) 
11 Top brine temperature controller set point (S17)
12 Brine level in the stage #2 (S23) 
13 Stage #2 brine level controller set point (S24) 

 

As an example, Fig. 11 shows the residual patterns 

from the PCA models when there is a drift of 0.2% to 

1% nominal value in the inlet cooling brine 

temperature sensor (Fault 1). The residuals are the 

differences between the measurement values and their 

PCA model predictions. Figure 11 also shows a 

significant increase in the Q  statistic of the PCA 

model exceeding the 95% confidence level. As seen in 

Fig. 11, the 2T  statistic for the faulty conditions stays 

within the range. This would be categorized as the 

fault scenario where the Q  statistic is outside the 

limits and the 2T  statistic is within the limits. These 

illustrate the capability of data-driven models in 

detecting system anomalies. It should be kept in mind 

that both 2T  and Q  statistics must be used for fault 

detection. Either statistic being violated will signify 

that a fault has happened. Violation of the 2T  statistic 

represents that the system operates at an abnormal 

state beyond the model space, while departure of the 

Q  statistic represents that some of the constraint 

equations defined in the residual space are violated 

and the system is abnormal. 

 

It is clear that the residuals reflect not only whether 

there is an abnormal component, but also the severity 

of the fault, which is important in helping the operator 

or the automatic controller to select the correct 

strategy in order to avoid severe negative effect caused 

by faulty devices. It should be noted that PCA can only 

deal with steady-state condition or a slow dynamic 

process. The confidence level will affect the false 
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alarm. In a real application, the confidence level needs 

to be adjusted according to the operation 

requirements. 
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Fig. 11 Residual pattern for inlet cooling brine temperature 

sensor drift (Fault 1). 

 

The PCA fault direction analysis is performed through 

processing the fault residuals. The eight fault 

directions correspond to the eight fault scenarios 

considered for the MSF system, as listed in Table 2. 

 

Figure 12 shows the fault isolation indices for the case 

of fault in the inlet cooling brine temperature sensor 

drift.  This is one of the eight fault scenarios in the 

MSF system. Note that the fault index is close to unity 

for the particular fault that occurs, and is significantly 

smaller for the others. Similarly, the other eight fault 

cases can be diagnosed accurately using this fault 

isolation approach [12]. 

 

Fig. 12 Fault isolation index for inlet cooling brine 

temperature sensor drift for a two two-stage MSF. 

The PCA directional fault isolation approach can also 

be extended to simultaneous multiple faults. In this 

paper, it is assumed that the simultaneous fault 

occurrence is limited to two at a time for all the eight 

predetermined faults in the MSF system. The same 

sensor set is applied to detect and isolate the dual 

faults. The 8 single-fault directions and the additional 

28 dual-fault directions must be used as fault 

signatures for dual fault isolation. In case of a 

particular dual-fault, the faulty data are expected to 

have large projections in the residual space for the two 

faults involved. As far as the dual-fault direction is 

concerned, we expect to see the maximum projection 

of the faulty sample residuals on the corresponding 

dual-fault direction. 

 

As an example, Fig. 13 illustrates the fault isolation 

for a particular dual-fault scenario involving Fault #1 

and Fault #6. These faults are inlet cooling brine 

temperature sensor drift and top brine temperature 

sensor drift. In the top plot, the fault isolation indices 

for single fault detector are in the range 0.5 – 0.6, with 

the other fault indices being less than 0.1. 

Nevertheless, the single-fault directional signatures 

for the dual-fault are still distinct enough to provide an 

initial indication of fault isolation. The lower plot in 

Fig. 13 shows the fault indices for all the 28 dual-fault 

combinations.  Dual fault combination #5 is correctly 

isolated by the confidence index which is close to 

unity.  Dual fault #5 is the simultaneous occurrence 

of fault F1 (inlet cooling brine temperature sensor 

drift) and fault F6 (top brine temperature sensor drift). 

 

In order to apply the PCA fault diagnostic method, it is 

necessary to pre-define the faults considered for the 

system of interest. In the event of undefined faults 

occurring in the system, one may be able to observe 

the faults using the fault directional approach, but the 

clear fault isolation may not be achievable with the 

existing fault directions. These faults, if properly 

identified later, may be included in the fault set. Thus, 

when a fault, that is not in the pre-selected set occurs, 

the confidence indices may have a spread without a 

clear indication of a specific fault. However, this is 

still an indication of impending fault, and further 

analysis is necessary to isolate the fault condition. 1 2 3 4 5 6 7 8
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Fig. 13 Fault isolation index for a dual-fault case with 

simultaneous sensor faults #1 and #6. 

 

4 Concluding remarks 
A comprehensive approach for the multivariate 

control of a dual-module reactor system was presented 

with application to the IRIS small modular reactor. 

The results demonstrate the ability of the 

multi-modular plant to follow load and maintain 

desired reactor and steam conditions. These results are 

the first of their kind and are important first steps 

towards developing small multi-modular reactors of 

the future. 

 

A general design framework was developed in this 

work in order to detect and isolate sensor, process, and 

device anomalies. The optimal sensor selection 

strategy is also effective in the systematic choice of 

process measurements for use in fault monitoring and 

diagnostics algorithms. A PCA method was 

introduced to generate fault signatures of typical faults 

defined in a MSF desalination plant. When the optimal 

sensor sets were used, both sensor faults and process 

faults were correctly detected and isolated using 2T  

and Q  statistics, as well as fault isolation index. It 

was also discovered through the FDI case studies that 

the PCA fault diagnostic approach could be extended 

to detect and isolate simultaneous dual-faults using the 

optimal sensor sets identified for the single-fault cases, 

in which case both single-fault and dual-fault 

directions shall be used as fault signatures in order to 

achieve dual-fault isolation. The fault diagnostic 

results demonstrated the effectiveness of the 

developed FDI methods, when used in conjunction 

with an optimal sensor selection strategy. 
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