Back to home
 

Nuclear data uncertainties propagation and quantification analysis on the PWR core level based on generalized perturbation theory

HAO Chen1,*, MA Ji1, ZHAO Qiang1, ZHANG Huiyan1, and CHEN Jianqiang1

1. Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, China 

Abstract: Based on the idea of uncertainty propagation, the uncertainties of core parameters, such as keff, are propagated from few-group homogenized cross-sections in the traditional two-step neutronics calculation strategy. The generalized perturbation theory can be used to quantify and propagate nuclear data uncertainty in the whole core diffusion calculation. In order to use generalized perturbation theory two key technical problems, sensitivity coefficients to few-group cross- sections and the method of generating few-group cross-section-covariance matrices, should be considered reasonably. In this paper, keff sensitivity coefficients to few-group cross-sections has been derived by using generalized perturbation theory. And most notably, a method of correlation analysis between different few-group XSs based on sensitivity information has been studied in depth to generate few-group cross-section-covariance matrices for uncertainty analysis on the core level. The sensitivity and uncertainty analysis method have been verified respectively. Numerical results for AP1000 core at hot zero power and hot full power condition are also presented in this paper and the results support that the methods studied in this work can be used to conduct sensitivity and uncertainty analysis for nuclear cross sections on the core level.
Keywords: generalized perturbation theory; covariance matrix; correlation; uncertainty; sensitivity
 
      Click here for viewing full text.