
Nuclear Safety and Simulation, Vol. 1, Number 1, MARCH 2010 89

Method and practice on safety software verification &
validation for digital reactor protection system

LI Duo, ZHANG Liangju, FENG Junting

Institute of Nuclear and New Energy Technology, Tsinghua University., Beijing 100084, China
E-mail:{ liduo, zhanglj, fengjt}@tsinghua.edu.cn

Abstract: The key issue arising from digitalization of reactor protection system for Nuclear Power Plant (NPP)
is in essence, how to carry out Verification and Validation (V&V), to demonstrate and confirm the software is
reliable enough to perform reactor safety functions. Among others the most important activity of software V&V
process is unit testing. This paper discusses the basic concepts on safety software V&V and the appropriate
technique for software unit testing, focusing on such aspects as how to ensure test completeness, how to establish
test platform, how to develop test cases and how to carry out unit testing. The technique discussed herein was
successfully used in the work of unit testing on safety software of a digital reactor protection system.
Keywords: Software Reliability, Verification, Digital Instruments

1 - Introduction1

As the instrumentation and control system (I&C) of
nuclear power plant (NPP) comes into a digital era,
the key issues arising from digitalization of NPP I&C
are how to effectively demonstrate and confirm the
completeness and correctness of the software that
performs reactor safety functions. In addition
investigation of which characteristic safety software
should have to be approved by the nuclear safety
authority is important. It is commonly accepted that
the essential way to address these issues is to carry out
a strict and independent Verification and Validation
(V&V) process in parallel with software development
phases. Among other approaches the most important
activity of software V&V process is software unit
testing, which verifies the consistency, correctness and
completeness of the software coding with software
design specification, yielded from the preceding
stages of software development process.
The practical work on V&V for the software of a
digitalized reactor protection system is covered in this
paper. The first part of the paper outlines the V&V
plan, including V&V processes, activities and tasks
that are carried out in parallel with the safety software
development. The second part focuses on software
unit testing, showing the technique of how to ensure
test completeness, how to establish test platform, how

Received date :October 15, 2009
(Revised date : November 3, 2009)

to develop test cases and how to carry out unit testing.
The last part demonstrates the actual test practice with
a typical unit testing.

2 - Safety software V&V
Software V&V is a disciplined approach to assess
software products throughout the product life cycle.
The V&V processes are tailored to specific system
requirements and applications and carried out in
parallel with software development phases. The V&V
activities for each process are carefully designed to
certify that the objectives of each development phase
are implemented correctly. Software V&V processes,
activities and tasks are defined in IEEE standard and
guidelines [1][2].
The development of safety software for NPP should
be a process controlled every step of the way. The
development process is organized as an ordered
collection of distinct phases. Each phase uses the
information developed in the earlier phase and
provides input information for preceding phases.
Typical phases of the development steps and an
outline of the process that may be applied are shown
in Fig. 1. The boxes show the development activities
to be performed and the hollow arrows show the
intended order and the primary information flow. A
V&V effort is typically applied in parallel with
software development and support activities, therefore
the boxes show the related V&V activities as a whole

LI Duo, ZHANG Liangju, FENG Junting: Method and practice on safety software verification & validation for digital reactor protection system

and the intended order of these activities, and their
potential information flow are shown by the solid
arrows. Software V&V activities determine whether
development products of a given activity confirm to
the requirements of that activity, and whether the
software satisfies its intended use and user needs. This
determination may include analysis, evaluation,
review, inspection, assessment and testing of software
products and processes. V&V processes assess the
software in the context of the system, including the
operational environment, hardware, interfacing
software, operators, and users.

Fig.1 Software development processes and its V&V activities

The objective of V&V activities is to collect evidence
and prepare documentations to be used in the safety
demonstration for the software for all various phases
of the systems life cycles. The general document for a
V&V effort is the Software V&V Plan (SVVP), which
includes all general information for a V&V effort (e.g.,
purpose, references, definitions, organization,
schedule, and etc.), identifies V&V activities and tasks
to be performed for all software life cycle processes,
and contains all V&V documentation to be produced,
such as V&V reports and V&V test documentation.

3 - Safety software unit testing
One of the important V&V processes is the V&V for
software implementation or software coding V&V,
which is coded as V5 in Fig.1. The development
activities in software implementation phase translate
software design into software source code, and finally
release that information as a piece of code suitable for
a machine. The V&V activities in parallel with
software implementation phase verify the consistency

and correctness of above mentioned translations,
making sure the functions of each software model
defined in software design were implemented
correctly, and no errors were introduced during
software coding, required programming practice,
prudent checking and criterion were fully carried out.
The main objects of software implementation V&V
include tracing source code to verify its consistency
with software design, and detecting errors introduced
during software coding, which are mainly performed
through static analysis and dynamic testing of
software units. Software unit testing should be carried
out on each basic code units one by one and cover
implementation details, such as logical structure and
data flow inside a software unit, which is kind of a
white box testing, and is different from black box
testing that focuses only on inputs and outputs of a
software unit.
The essential demand for unit testing of safety
software is the completeness of the testing and is
measured in coverage ratio, which should be 100% for
safety software. However, there are many different
kinds of coverage, each focusing on one aspect of
software source code. One kind of coverage can not
be included or replaced by another. The strategy to
determine what kinds of coverage ratio should be
included for the completeness of the test is based on
the analysis of specific features for a software source
code.
For the sake of easy realization of complete testing,
we use modular and simple structure in the
development of the safety software:
(1) The software was divided into several basic
modules.
(2) Only straight forward top-down flow of execution
was used in each module, no nesting, no jumping, no
interrupt was used, making the process of execution
and its behavior determinable and transparent.
(3) No operation system was used; no system routines
were called for the execution of the safety software, so
that all source codes are available and testable.
Based on these characteristics of the software, it is
possible to carry out a complete unit testing with
100% coverage ratio, including statement coverage,
branch coverage and MC/DC coverage.

Nuclear Safety and Simulation, Vol. 1, Number 1, MARCH 2010 90

Statement coverage means that test cases are designed
to let every executable code line execute once at least,
and all executable code lines would be tested when

LI Duo, ZHANG Liangju, FENG Junting: Method and practice on safety software verification & validation for digital reactor protection system

test cases make statement coverage ratio achieve
100%. However, all executable code lines do not
execute one after the other, since there are some code
branches in the software. So statement coverage
cannot be used to measure whether a code branch
executing correctly a branch coverage should be
added to measure the completeness of safety software
unit testing.
Branch coverage, or decision coverage, means that
test cases are designed to make true value and false
value of every decision conditions can be achieved, i.e.
code branches execute with true value and false value
once at least, and all code branches would be tested
when test cases make branch coverage ratio achieve
100%. However, when a code branch is controlled by
a composite decision condition and the execution of
branch with true value or false value is decided by two
or more condition composite values, branch coverage
could be used to measure only one possible composite
condition value rather than all condition values.
Decision condition coverage is used to measure and
test the composite decision condition, which means
that test cases are designed to make each condition
value in a composite decision condition taking all
values, whether true or false value once at least, and
the result of composite decision condition itself,
taking true and false value once at least. In theory,
decision condition coverage can be used to measure
whether a composite decision condition is completely
tested, however, test cases would have an exponential
increase with the number of decision condition, which
makes it is difficult to achieve 100% decision
condition coverage ratio. In safety software unit
testing we instead choose modified
conditions/decision coverage.

Nuclear Safety and Simulation, Vol. 1, Number 1, MARCH 2010 91

Modified condition/decision coverage, or MC/DC, is
developed from decision condition coverage with such
changes, that test cases are designed to make the entry
and exit of every code branch executed once at least,
every decision result is executed once at least, and
make basic Boolean expression, rather than each
condition itself taking true and false value once at
least. Basic Boolean expressions are decomposed
from a composite decision condition through logical
analysis, and each expression has an independent
value for the condition result of the composite
decision, which prevents test cases from exponentially
increasing and makes it possible to achieve 100%

MC/DC coverage ratio.

4 Establish software unit testing
environment
In general, a software unit to be tested is not an
independently executable program, so it is necessary
to establish a testing environment to make the
software unit executable. This includes the
development of driver modules and stub modules. In a
testing environment a driver module works as a main
program getting input data from test cases, passing the
data to the software unit and outputting test results,
and stub modules work as replacements of subroutines
to be called by the software unit, which is shown in
Fig. 2. There are three steps to establish a testing
environment, which are developing a driver module to
establish a minimal executable system and simulate a
up-top subroutine, calling the software unit that needs
to be tested, developing stub modules to simulate the
interface of the software unit and subroutines to be
called by the software unit, and preparing input data,
or test cases, to make the software unit executable in
the testing environment.

Fig.2 Unit testing scheme

The work of safety software unit testing mainly
include the steps of designing test cases, editing input
and anticipated output values for the test cases to
check whether the software unit executes correctly,
analyzing what test cases are needed to achieve the
testing goal for a safety software, i.e. 100% statement
coverage, branch coverage and MC/DC coverage
ratios in the testing result. Test cases should be
designed for each safety software unit through
following steps:
(1) According to the software unit design document,
make clear the function, value range of input and
anticipated output data of the software unit.

LI Duo, ZHANG Liangju, FENG Junting: Method and practice on safety software verification & validation for digital reactor protection system

(2) Design the first test case and let the software unit
execute with the input data within its designed value
range and validate the function of the software unit
being achieved.
(3) Analyze the test result according to software
source code and flow diagram, and design a new test
case by changing input data to make a certain
statement, branch, or composite decision condition in
a branch execute and increase related coverage ratio.
(4) Each test case is designed to increase a kind of
coverage ratio; the result of the testing should be
checked for the coverage ratio. If a test case has no
contribution to increase any coverage ratio, it should
be modified or replaced by another one.
(5) Repeat above steps (3) to (4) till 100% statement
coverage, branch coverage and MC/DC coverage
ratios are achieved.

5 - Practice of software unit testing
We choose VectorCAST as an aiding tool to perform
software unit testing in the V&V of the safety
software of a digital reactor protection system.
VectorCAST is a Commercial Off-the-Shelf(COTS)
software tool that provides an integrated software test
solution. VectorCAST has a summary report to
visualize what and how the test coverage is achieved,
in addition to some useful utilities, such as developing
test driver and stub automatically.
The procedures of software unit testing for an
example program are shown in the following.
The example program “get_2_out_of_3.c” is a
function routine to execute 2_out_of_3 logical process
in a digital reactor protection system. The source code
and flow diagram are shown in Figs. 3 and 4,
respectively. In the program there are 3 processes
from top to down:
(1) Initiate 3 local parameters mData[0,1,2] according
to input data, whose available values are 0 or 1 ;
(2) Compare every 2 parameters value among
mData[0,1,2], if there are any two parameters having
equal value, put the value into the parameter of reData,
which is going to be returned by the program,
otherwise put the “-1”, e.g. ERROR, into the reData;
(3) Validate the value of reData is acceptable, i.e. it is
0 or 1 and return reData, otherwise return -1, e.g.
ERROR.
Based on the aiding tool of VectorCAST we establish

a testing environment for the program of
“get_2_out_of_3.c” and carry out the unit testing in 4
steps:
(1) Set compile option with the same parameters used
in the final compile of “get_2_out_of_3.c”;
(2) There are no stub routines since
“get_2_out_of_3.c” calling nothing;
(3) VectorCAST automatically builds a driver module
to link with “get_2_out_of_3.c”, which is going to be
executed with a set of test cases;
(4) Design and edit test cases executed by
VectorCAST, record testing result. The test cases are
developed manually and VectorCAST gives some
suggestions or hints to develop new test cases based
on coverage analysis for the previous tests.

Fig.3 Source code of example program

Fig.4 Flow diagram of example program

Nuclear Safety and Simulation, Vol. 1, Number 1, MARCH 2010 92

LI Duo, ZHANG Liangju, FENG Junting: Method and practice on safety software verification & validation for digital reactor protection system

Table 1 Testing case design for example program

Test cases Braches to be tested

Data[0] Data[1] Data[2] return ① ② ③ ④ reData==0 reData==1

1. 0 1 2 -1 F F F - - -

2. 1 0 1 1 F F T T F T

3. 2 1 2 -1 F F T F F F

4. 0 1 1 1 F T - T F T

5. 0 0 1 0 T - - T T F

As shown in Fig.4, there are 4 code branches in the
source code of the example program, and there is a
composite decision condition in branch , therefore, ④

the test cases should be designed to make each code
branch taking true and false value at least once, and
make each decision condition, i.e. reData = = 0 and
reData = = 1, taking true and false value once. The 5
test cases are designed and shown in Table 1, and the
tested code branches and decision conditions for each
test case are shown, too. Testing result is shown in Fig.
5.

Fig.5 Coverage analysis for testing result of example program

where asterisks indicate that lines are covered; (T) and (F)
indicate that branches with True and False values are covered
respectively.

6 - Conclusion
Strict and independent V&V processes are necessary
to effectively demonstrate and confirm the
completeness and correctness of the software that
performs reactor safety functions. Among others the
most important activity of software V&V is, software
unit testing, which verifies the consistency,
correctness and completeness of the software coding
with software design specification yielded from the
preceding stage of software development process.
This paper discusses the method for software unit
testing, which was successfully demonstrated and
used in the work unit of testing, on safety software of
a digital reactor protection system.

References
[1] IEEE Std 1012-1998, IEEE Standard for Software

Verification and Validation
[2] IEEE Std 1059-1993, IEEE Guide for Software Verification

and Validation Plans
[3] GU,Y., SHI, J.: Introduction to software testing technology

(in Chinese) [M], Tsinghua University Press, 2004.
[4] Vector CAST Getting Started [M]. USA, Vector Software
Inc., 2006.

Nuclear Safety and Simulation, Vol. 1, Number 1, MARCH 2010 93

