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Abstract: A hybrid-type diagnostic system to give a final diagnostic result by integrating the results of 

sub-systems is one of promising ways to develop a flexible diagnostic system. This article describes the 

general configuration of a hybrid-type diagnostic system and presents the techniques for the important topics 

of how to integrate the diagnostic results of sub-systems and how to select suitable signals for diagnosis. The 

article also introduces the outline of a hybrid diagnostic agent system for the fast-breeder reactor, “Monju”. 
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1 Introduction
1
 

A hybrid-type diagnostic system that a final diagnostic 

result is given by integrating the results of 

sub-systems is one of promising ways to develop a 

diagnostic system because such system composition 

has several advantageous features in adding and 

improving diagnostic functions in the system. 

However, there are two important topics to be 

considered in developing a hybrid-type diagnostic 

system. The one is how to integrate the diagnostic 

results from sub-systems. The other is how to select 

suitable process signals for plant diagnosis. 

 

The authors studied a hybrid-type diagnostic system 
[1]

 

to detect and identify early an anomaly that happens in 

the fast-breeder reactor “Monju”. The system utilizes 

an agent system configuration composed of four 

diagnostic software agents. The advantageous 

characteristics of agents are: (1) easy realization of 

fault tolerant system by duplex systems, (2) easy 

system maintenance because of small program size of 

an agent compared with a total system including many 

functions, (3) easy upgrade of system function by 

adding only necessary agents, (4) high reusability of 

an agent because of the generality of the single 

function agent, and (5) easy localization of system 

trouble because of high transparency of agent 

function. 
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The four diagnostic agents are (1) an estimation agent 

of overall heat transfer coefficient of evaporator and 

superheater, (2) a state identification agent based on 

SVM (Support Vector Machine) 
[2]

, (3) an anomaly 

detection agent by WT (Wavelet Transformation) 
[3]

, 

and (4) a CBR (Case-Based Reasoning)
 [4]

 agent using 

several attributes in both time and frequency domains. 

 

This article describes a technique to integrate the 

diagnostic results given by sub-systems, a technique 

to select suitable process signals for plant diagnosis, 

and the outline of the hybrid-type diagnostic system 

for the fast-breeder reactor “Monju” based on the 

literature 
[1]

. 

 

2 Technique to integrate diagnostic 

results by sub-systems 

2.1 Hybrid-type diagnostic system and topics to be 

considered in the development 

The general configuration of a hybrid-type diagnostic 

system is shown as Fig. 1. At the top of the system, 

there is an integration agent to collect diagnostic 

results and integrate them. In the lower, there are 

diagnostic agents. The integration agent may store 

trend data of observed signals and serve them to the 

diagnostic agents. 

 

In the integration of the diagnostic results of 

sub-systems, several considerations are necessary. 

First, each diagnostic sub-system has its own 
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applicable range due to its diagnosis principle, sensor 

data used in its diagnosis, and so on. Second, the 

accuracy of the diagnostic result of a sub-system 

depends on not only its diagnosis principle but also 

the setting of threshold values for diagnosis that are 

usually determined by solving the trade-off of 

erroneous alarm and mis-alarm. Third, it is usually 

hard for the integration agent to know how much a 

diagnostic parameter of a sub-system exceeds a 

threshold value. 

 

Fig. 1 Configuration of a hybrid-type diagnostic system. 

 

2.2 Integration of diagnostic results by sub-systems 

By considering the topics to be considered in the 

integration of diagnostic results by sub-systems, the 

authors propose a framework 
[1]

. In the framework, 

each sub-system outputs its diagnostic result and 

“confidence value” for the result. On the other hand, 

the integration agent uses “trust values” for diagnostic 

sub-systems for the integration of diagnostic results by 

sub-systems. 

 

The confidence value is given between 0.0 and 1.0. 

The confidence values of 1.0 and 0.0 mean that the 

sub-system has absolute confidence and no confidence, 

respectively. In the framework, the determination of 

the confidence value is left to each sub-system. The 

confidence value may be determined base on the 

following evaluation value depending on the diagnosis 

principle of a sub-system: 

1) an exceeding or underrating value for a threshold 

value when the sub-system uses a threshold value,  

2) a distance from a discrimination function when 

the sub-system makes a state classification by the 

function,  

3) a coincidence value for a typical pattern when the 

sub-system checks some attributes with those of 

past cases. 

 

On the other hand, the trust value is given between 0.0 

and 1.0. The trust values of 1.0 and 0.0 mean that the 

integration agent absolutely trusts the result and 

ignores the result of the corresponding diagnosis 

sub-system, respectively. In the authors’ study, a 

sub-system outputs its diagnostic result as a category 

of plant condition such as normal, anomaly 1, 

anomaly 2, and so on with a confidence value. Thus, 

the trust value is predetermined for each category of 

plant condition that a sub-system identifies. 

 

The integrated diagnosis result is given to be a plant 

condition whose evaluation value is highest as 

calculated by the following equation: 

Ei = Cai ×Tai
a

å        (1) 

where

   

Ei, Cai , and Tai  are evaluation value for 

plant condition 

   

i, confidence value of sub-system a  

for plant condition 

   

i , and trust value for the 

diagnostic result of sub-system a  in its diagnostic 

result of plant condition 

   

i. 
 

It is considered as reasonable that the trust value is 

determined by the diagnostic performance of a 

sub-system in the past if the confidence value of the 

sub-system is given in an unchangeable way. From 

this consideration, the trust value is calculated by 
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where Caij  and Caik  are a confidence value of 

correct diagnostic result for plant condition i  of 

sub-system a  and a confidence value of wrong 

diagnostic result in past diagnoses. The meaning of 

the trust value defined by Eq. (2) is clear and the value 

is easy to update on line by keeping the values of the 

summations of Caij  and Caik . 

 

The theoretical value of trust value can be calculated 

easily if a sub-system gives its diagnostic result at 

random and the plant condition is also given at 

random. For example, there are four plant conditions 

and the happening probabilities of the conditions are 

0.6, 0.2, 0.1 and 0.1 and the diagnostic performance of 

sub-systems are given as shown in Table 1. Then, the 

theoretical values of trust values are calculated as 

shown in Table 2. 
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Table 1 Diagnostic performance of sub-systems 

Sub- 
system 

True 
condition 

Identification probability [%] Confidence 
value 1 2 3 4 

A 

1 95 3 2 0 

0.8-1.0 
2 0 100 0 0 
3 3 2 95 0 
4 5 0 5 90 

B 

1 98 2 0 0 
0.8-1.0 

2 3 95 2 0 
3 10 20 70 0 0.6-0.9 
4 25 0 25 50 0.3-0.6 

Table 2 Theoretical values of trust values 

Sub- 
system 

True 
condition 

Probability of correct 
identification [%] 

Trust value 

A 

1 98.6 0.986 
2 90.9 0.909 
3 84.8 0.848 
4 100 1.000 

B 

1 93.5 0.957 
2 85.6 0.869 
3 70.7 0.780 
4 100 1.000 

 

Trust values of both sub-systems for condition 4 are 

1.000 because the results of condition 4 by the 

sub-systems are always correct although sub-system B 

has high probability of mis-identification for condition 

4. If the confidence value is the same independent on 

the true condition, the trust value is the same as the 

probability of correct identification. It is interesting 

that the trust values of sub-system B are higher than 

the probabilities of correct identification except for 

condition 4. This is because that sub-system B gives 

high confidence values for the conditions of high 

diagnostic performance and middle and low 

confidence values for the conditions of low diagnostic 

performance. The theoretical values of trust values for 

the stochastic case suggest the adequacy of the 

determination of trust values by Eq. (2) 

 

3 Selection of suitable plant variables 

for diagnosis 

The selection of suitable plant variables is important 

in diagnosis because the performance of diagnosis 

depends on the selection. Usually, designers of a 

diagnosis system select plant variables to be used by 

their experiences of plant diagnosis and knowledge of 

both the principles of diagnostic techniques and 

components to be diagnosed. 

 

A technique to select a suitable combination of 

process signals based on the performance of the 

diagnostic system is developed 
[1]

. Although the 

technique utilizes “model score” for evaluating the 

performance of a diagnostic system and SVM 

(Support Vector Machine) 
[2]

 for predicting diagnostic 

performance of the system using more process signals, 

this subsection presents a general algorithm based on 

the technique. 

 

The technique is based on several empirical rules for 

the combinations of process signals on diagnostic 

performance: (1) the diagnostic performance will not 

increase so much if the process signals that give high 

diagnostic performance are combined, (2) a 

combination of the process signals that do not give 

high performance does not give high performance, (3) 

an addition of the process signal that give low 

diagnostic performance will not increase the 

performance, (4) the performances of the two 

diagnostic systems using the same kinds of signals 

measured at similar places by the same measurement 

principle are almost the same. 

 

The technique uses a predictor that learns the 

performance of a diagnostic system with each 

combination of less process signals and predicts the 

performance of the diagnostic system using a 

combination of more process signals. The SVM and 

other techniques of machine learning and function 

fitting can be applied as the predictor. 

 

The generalized signal selection technique based on 

the technique 
[1]

 is outlined as follows, where the 

performance index is an index to evaluate the 

performance of a diagnostic system such as accuracy, 

detection time, etc. depending on the purpose of 

diagnosis: 

 

Step 1: Selection of useful signals. 

Step 1.1: Calculate a base performance index MBof 

diagnostic system using all process signals. 

Step 1.2: Calculate performance index Mi of the 

diagnostic system using a process signal i . 

Step 1.3: Select the signal if the performance index 

of the diagnostic system using the signal is higher 

than MB  or the order of the performance index in 

arranging performance indices from the highest is 

smaller than a predetermined order. The number of 

selected signals is set tom . 
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Step 2: Optimization of signal combination. 

Step 2.1: Obtaining the set of signal combinations by 

using the signals selected in Step 1. 

Step 2.2: For a given j  (initially 2), construct 

mC j  diagnostic systems using j  signals and 

calculate their performance indices. 

Step 2.3: Construct a predictor to estimate the 

performance indices of diagnostic systems 

using j +1 signals from the performance indices of 

diagnostic systems using 1 to j  signals and 

estimate the performance indices Mk
E( j+1)

of 

diagnostic systems using j +1 signals. 

Step 2.4: Construct mC j+1  diagnostic systems 

using j +1 signals and calculate their performance 

indices
 
Mk
C( j+1)

. 

Step 2.5: Move to Step 2.6 if the termination 

condition is satisfied. Otherwise, return Step 2.2 after 

incrementing j . The termination condition is that the 

increase of highest performance index is small by the 

increase of the number of signals. 

Step 2.6: Estimate the performance indices of 

diagnostic systems using j +1  to m  signals by 

the predictor. 

Step 2.7: Select a combination of signals that gives 

highest estimated or calculated performance index. 

 

For example, Table 3 shows the comparison of the 

performance SVM diagnostic systems 
[1]

 in the cases 

of using all signals and selected signals. The “Basic 

SVM” in the table uses 16 signals. From the table, the 

SVM diagnostic systems using the signals selected by 

the technique show comparative diagnostic 

performance. 

Table 3 Example of comparison of diagnostic performance 

Case Anomaly 
Opt-SVM 

(sec) 
Selected 
signals 

Basic SVM 
(sec) 

1 
Decrease of 
feedwater temp. 

10057 3 10036 

2 
Decrease of heat 
transfer at evaporator 

10031 4 10031 

3 
Decrease of 
feedwater flow rate 

10240 8 10257 

4 
Decrease of Primary 
Na flow rate 

10167 4 10151 

 

4 Hybrid diagnostic agent system for 

“Monju” 

4.1 Diagnostic techniques developed 

A hybrid diagnostic agent system for “Monju” is 

developed as shown in Fig. 2. It consists of the 

diagnosis integration sub-system and four diagnostic 

sub-systems to detect small anomalies using process 

signals. The sub-systems are: (1) an estimation agent 

of overall heat transfer coefficient of evaporator and 

superheater, (2) a state identification agent based on 

SVM, (3) an anomaly detection agent by WT, and (4) 

a CBR diagnostic agent using several attributes in 

both time and frequency domains. 

 

Fig. 2 Hybrid diagnostic system for “Monju”. 

 

4.2 Estimation technique of overall heat transfer 

coefficients of evaporator and superheater 

Diagnostic techniques of evaporator and superheater 

using observed process signals are developed to 

monitor their operation conditions 
[5,6]

. The techniques 

estimate the overall heat transfer coefficients that are 

important unobserved state variables for evaporator 

and superheater. 

 

Simplified models of the evaporator and superheater 

of “Monju” are constructed by considering their 

structures, the flows of secondary sodium and 

water/steam, and small number of process signals 

available to estimate the overall heat transfer 

coefficients. Based on the simplified models, 

equations to calculate overall heat transfer coefficients 

of evaporator and superheater are derived. 

 

As an example to estimate the overall heat transfer 

coefficient, Fig. 3 shows estimation results in the case 

of a decrease of heat transfer rate in evaporator. The 

figure also shows the time responses of confidence 

value; a descriptor of the certainty of anomaly 

detection. The anomaly happens at 1000 [s]. Owing to 

the occurrence of the anomaly, the overall heat 

transfer coefficient in the evaporator decreases. 
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Fig. 3 Estimation results of overall heat transfer coefficient of 

evaporator. 

 

4.3 State identification technique based on support 

vector machine 

The SVM is a kind of machine learning technique and 

is widely applied to construct a state identifier 
[2]

. The 

SVM has a characteristic feature to derive nonlinear 

identification functions from training data. It can 

update the identification functions when new training 

data are obtained. 

 

As an example for showing high performance of 

anomaly detection, Table 4 shows comparisons of the 

performance of the detection of a small change of 

operating condition of “Monju” by a small insertion of 

fine tuning control rod between SVM and a classical 

threshold technique using the threshold value of 2s  

( s : standard deviation of noises). The selected 3 

signals used in the identification of plant condition are 

different in the cases A and B. One of 3 signals that 

give highest diagnostic performance is used in the 

threshold technique. As seen from the table, the 

identification results by SVMs give high correct 

identification rates. 

Table 4 Comparison of identification rates of plant condition 

Case 
Diagnostic 
technique 

True 
condition 

Rates of identification 
[%] 

A 

SVM 
1 96.6 3.4 

2 0.4 99.6 

Threshold 
technique 

1 96.1 3.9 

2 11.8 88,2 

B 

SVM 
1 95.1 4.9 

2 0.2 99.8 

Threshold 
technique 

1 94.3 5.7 

2 61.5 38.5 

 

4.4 Anomaly detection technique by wavelet 

transform 

A WT 
[3]

 has a strong capability to detect the inclusion 

of a similar wave (short-term change pattern) in a 

changing signal to a reference wave called a mother 

wavelet (MW). WT can analyze time-changing data in 

both frequency and time domains. Therefore, WT is 

widely applied to detect a sudden anomaly of a 

component with rotating parts such as pump, motor, 

and so on. In principle, the detection performance will 

increase if a MW is similar to the wave to be detected. 

 

An anomaly detection technique 
[7]

 is developed, 

where a MW designed from a characteristic wave 

included in a real signal at an anomaly is used. To 

design a MW from a real signal, the technique applies 

a parasitic discrete wavelet transform (P-DWT) 
[8]

 that 

has a large flexibility in the design of a MW and a 

high processing speed. 

 

As an example to detect a small anomaly, the collision 

of a spherical particle is successfully detected as 

shown in Fig. 4. Although the collision of the particle 

to the pump is hardly observed by the measured 

vibration signal, the technique detects it at around 2.8 

[s] as seen from a large value of WIC. 

 

 
(a) Measured vibration signal 

 

(b) WIC using parasitic filter 

Fig. 4 Detection of collision of a spherical particle. 

 

4.5 Case-based reasoning diagnostic technique 

based on multi-attribute similarity 

A diagnostic technique applying CBR is developed. 

The characteristic feature of the technique is to use 

multiple attributes of process signals for similarity 

evaluation to retrieve a similar case stored in a case 

base. The structure of the diagnostic technique is 

shown in Fig. 5. The plant condition is evaluated in 

the normal condition, if the attributes of process 

signals are similar to those in the normal condition. If 

the plant condition is diagnosed to be an anomalous 

one, the anomaly is identified by comparing the 

attributes of process signals to those of the anomalous 

cases. If there is no similar case, the plant condition is 

diagnosed to be in a different anomalous condition 

from those of past cases. 
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Fig. 5 Structure of case-based reasoning diagnosis system. 

 

In the diagnostic technique, the similarity index is 

calculated by an exponential distribution-based 

similarity EDS
[9]

 defined as: 

EDS = Exp -
f - g

n

Sn

æ

è

ç
ç

ö

ø

÷
÷
,     (3) 

Where

   

f  and 

   

g are N-dimensional attribute vectors 

and both 

  

n  and 

   

S  are matching parameters to 

adjust the severity of matching. As seen from Eq. (3), 

EDS  approaches 1.0 if the similarity between 

   

f  

and 

   

g  becomes high. On the other hand, EDS  

approaches 0.0 if the similarity between 

   

f  and 

   

g 

becomes low. 

 

The attributes in both frequency and time domains are 

used. In frequency domain, the spectra in low 

frequency between 0.001 and 0.01 [Hz], and high 

frequency between 0.01 and 0.5 [Hz] are utilized. On 

the other hand, pertinent descriptors such as average, 

covariance, skewness, and kurtosis are utilized as 

attributes in time domain. In each process signal, three 

similarity indices are calculated for the attributes of 

low and high frequency bands in frequency domain 

and the attributes in time domain. 

 

As an example of diagnostic results, Fig. 6 shows the 

trend graphs of similarity indices for four process 

signals at the anomaly case of a small decrease of 

feedwater temperature. The similarity indices for three 

of the four process signals change from 1.0 to 0.0, 

implying the occurrence of an anomaly of decreasing 

feedwater temperature. This means that the technique 

can identify the anomaly that happened. 
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Fig. 6 Similarity indices to a case of small feedwater 

temperature decrease. 

 

5 Concluding remarks 

The article describes the general configuration of a 

hybrid-type diagnostic system and presents the 

techniques for the important topics of how to integrate 

the diagnostic results of sub-systems and how to select 

suitable signals for diagnosis. The article also 

introduces the outline of a hybrid diagnostic agent 

system for “Monju”. 

 

Although the techniques of integration and signal 

selection are applicable to any engineering plant, 

further investigation and extension may be made for a 

real implementation of hybrid-type diagnostic system. 
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